早教吧作业答案频道 -->其他-->
如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为.
题目详情
如图在菱形ABCD中,∠B=∠EAF=60°,∠BAE=20°,则∠CEF的大小为______.
▼优质解答
答案和解析
连接AC,
在菱形ABCD中,AB=CB,
∵∠B=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°,
∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,
,
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∠EAF=∠D=60°,则△AEF是等边三角形,
∴∠AFE=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
在菱形ABCD中,AB=CB,
∵∠B=60°,
∴∠BAC=60°,△ABC是等边三角形,
∵∠EAF=60°,
∴∠BAC-∠EAC=∠EAF-∠EAC,
即:∠BAE=∠CAF,
在△ABE和△ACF中,
|
∴△ABE≌△ACF(ASA),
∴AE=AF,
又∠EAF=∠D=60°,则△AEF是等边三角形,
∴∠AFE=60°,
又∠AEC=∠B+∠BAE=80°,
则∠CEF=80°-60°=20°.
故答案为:20°.
看了 如图在菱形ABCD中,∠B=...的网友还看了以下:
函数F(X)在[a,b]上连续,(a,b)上可导.证明至少存在一点(c,F(c))使得在C点的导数 2020-05-14 …
已知函数f(x)=1-cosx+sin(x+π/6) 1求f(x)的最小正周期,2,记△ABC的内 2020-05-16 …
已知向量m=[2cos(x/2),1],n=[sin(x/2),1](x属于R),设函数f(x)= 2020-05-17 …
● 给定关系模式R ( U,F) ,U = {A,B,C,D }, F={A→C,A→D,C→B,B 2020-05-26 …
若a/b=c/d=e/f,则下列各式中正确的是().A.e/f=ac/bdB.e/f=(a+c+e 2020-06-06 …
设函数f(x)=cos(2x-π/3)-cos2x,x属于R,求f(x)在(0,π/2)上的值域1 2020-06-27 …
三角形三边a,b,c,且f(a),f(b),f(c)也是三角形三边,则称保三角函数,h(x)=si 2020-06-30 …
一道高数题目设f(x)在x=a的某个临域内有定义,则f(x)在x=a处可导的一个充分条件是()(A 2020-07-30 …
一个导数问题的理解设f(x)在[a,b]上连续,在(a,b)内可导且不恒于常数,f(a)=f(b) 2020-07-31 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …