早教吧作业答案频道 -->数学-->
参数方程:acosα+bsinα=(根号下a平方+b平方)乘sin(α+ω)的证明具体过程
题目详情
参数方程:acosα+bsinα=(根号下a平方+b平方)乘sin(α+ω)的证明具体过程
▼优质解答
答案和解析
设acosA+bsinA=xsin(A+M)
∴acosA+bsinA=x((a/x)cosA+(b/x)sinA)
由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x
∴x=√(a^2+b^2)
∴acosA+bsinA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=a/b
另外,这个叫辅助角公式
∴acosA+bsinA=x((a/x)cosA+(b/x)sinA)
由题,(a/x)^2+(b/x)^2=1,sinM=a/x,cosM=b/x
∴x=√(a^2+b^2)
∴acosA+bsinA=√(a^2+b^2)sin(A+M) ,tanM=sinM/cosM=a/b
另外,这个叫辅助角公式
看了 参数方程:acosα+bsi...的网友还看了以下:
等差数列,若S奇表示奇数项的和,S偶表示偶数项的和,公差为d,则①当项数为偶数2n时,S偶-S奇= 2020-06-26 …
设A,B分别是m*n,n*s,且A与AB的秩满足r(A)=r(B).证明:存在s*n矩阵C,使得A 2020-06-30 …
数学奥林匹克小丛书设S为非空数集,且满足:2不属于S补充条件:若a属于S,则1/(2-a)也属于S 2020-07-11 …
几个关于圆周率π的问题1.设S=1/1²+1/2²+1/3²+1/4²……+n²,求证n-->∞时 2020-07-19 …
在等差数列{an}中,⑴若项数为偶数2n,则S2n=n(a1+a2n)=n(an+an+1)(an 2020-07-21 …
已知S(1)、S(2),证(r+1)S(2)=(r-1)S(1)^2+2aS(1).S(1)=a+ 2020-07-22 …
1+1/2+1/3……+1/n,(n>1)证S(2^n)>1+n/2(n>=2,n属于N*)已知S 2020-07-22 …
(Ⅰ)设n维向量组α1,α2,…,αs线性无关,β1,β2,…,βt线性无关,且s+t>n,证明: 2020-08-01 …
设A=(α1,α2,…,αr)是n×r矩阵,B=(β1,β2,…,βs)是n×s矩阵,rank(A) 2020-11-01 …
已知数列{a[n]}的前n项和为S[n],且满足a[n]+2S[n]×S[n-1]=0(n≥0),a 2020-11-01 …