早教吧 育儿知识 作业答案 考试题库 百科 知识分享

在△ABC中,∠A=40°:(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;(2)如图(2)BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;(3)如图(3)BO、CO分别是△AB

题目详情
在△ABC中,∠A=40°:
作业帮
(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;
(2)如图(2)BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;
(3)如图(3)BO、CO分别是△ABC的一内角和一外角角平分线,且相交于点O,求∠BOC;
(4)根据上述三问的结果,当∠A=n°时,分别可以得出∠BOC与∠A有怎样的数量关系(只需写出结论).
▼优质解答
答案和解析
(1)∵∠BOC=180°-∠OBC-∠OCB,
∴2∠BOC=360°-2∠OBC-2∠OCB,
而BO平分∠ABC,CO平分∠ACB,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴2∠BOC=360°-(∠ABC+∠ACB),
∵∠ABC+∠ACB=180°-∠A,
∴2∠BOC=180°+∠A,
∴∠BOC=90°+
1
2
∠A.
当∠A=40°,∠BOC=110°;

(2)∠OBC=
1
2
(∠A+∠ACB),∠OCB=
1
2
(∠A+∠ABC),
∠BOC=180°-∠0BC-∠OCB,
=180°-
1
2
(∠A+∠ACB)-
1
2
(∠A+∠ABC),
=180°-
1
2
∠A-
1
2
(∠A+∠ABC+∠ACB),
结论∠BOC=90°-
1
2
∠A.∠BOC=90°-
1
2
∠A.
当∠A=40°,∠BOC=70°.

(3)∵∠OCE=∠BOC+∠OBC,∠ACE=∠ABC+∠A,
而BO平分∠ABC,CO平分∠ACE,
∴∠ACE=2∠OCE,∠ABC=2∠OBC,
∴2∠BOC+2∠OBC=∠ABC+∠A,
∴2∠BOC=∠A,
即∠BOC=
1
2
∠A.
当∠A=40°,∠BOC=20°;

(4)∠BOC=90°+
1
2
n;∠BOC=90°-
1
2
n;∠BOC=
1
2
n.