早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达

题目详情
如图,在Rt△ABC中,∠B=90°,BC=5
3
,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.

(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
▼优质解答
答案和解析
(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又AE=DF,
∴四边形AEFD为平行四边形.
∵AB=BC•tan30°=5
3
×
3
3
=5,
∴AC=2AB=10.
∴AD=AC-DC=10-2t.
若使▱AEFD为菱形,则需AE=AD,
即t=10-2t,t=
10
3

即当t=
10
3
时,四边形AEFD为菱形.
(3)①∠EDF=90°时,四边形EBFD为矩形.
在Rt△AED中,∠ADE=∠C=30°,
∴AD=2AE.
即10-2t=2t,t=
5
2

②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=90°-∠C=60°,
∴AD=AE•cos60°.
即10-2t=
1
2
t,t=4.
③∠EFD=90°时,此种情况不存在.
综上所述,当t=
5
2
秒或4秒时,△DEF为直角三角形.