早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.(1)求证:∠PCD=∠PDC;(2)求证:OP是线段CD的垂直平分线.

题目详情
作业帮如图,已知P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.
(1)求证:∠PCD=∠PDC;
(2)求证:OP是线段CD的垂直平分线.
▼优质解答
答案和解析
(1)∠PCD=∠PDC.
理由:∵OP是∠AOB的平分线,
且PC⊥OA,PD⊥OB,
∴PC=PD,
∴∠PCD=∠PDC;
(2)OP是CD的垂直平分线.
理由:∵∠OCP=∠ODP=90°,
在Rt△POC和Rt△POD中,
PC=PD
OP=OP

∴Rt△POC≌Rt△POD(HL),
∴OC=OD,
由PC=PD,OC=OD,可知点O、P都是线段CD的垂直平分线上的点,
从而OP是线段CD的垂直平分线.