早教吧作业答案频道 -->其他-->
(1)如图(1),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的内部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系,并写出证明过程.(2)如图(2),把三角形纸片AB
题目详情
(1)如图(1),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的内部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系,并写出证明过程.
(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?(只写出答案,无需证明).
(3)在图(1)的基础上再以FG为折痕叠纸片,形成如图(3)的形状.判断∠1、∠2、∠3、∠4、∠5、∠6、∠7的之间大小关系吗?(只写出答案,无需证明).
(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?(只写出答案,无需证明).
(3)在图(1)的基础上再以FG为折痕叠纸片,形成如图(3)的形状.判断∠1、∠2、∠3、∠4、∠5、∠6、∠7的之间大小关系吗?(只写出答案,无需证明).
▼优质解答
答案和解析
(1)2∠O=∠ODC+∠BEO.理由如下:
如图1,∵把三角形纸片ABC的角A沿DE折起,点A的对称点为点O,
∴∠A=∠O,∠ADE=∠ODE,∠AED=∠OED.
∵∠O+∠ODE+∠OED=180°,
∠ODC+∠ODE+∠EDA=180°,
∠BEO+∠DEO+∠AED=180°,
∴2∠O=360°-2∠0DE-2∠OED,
∠ODC=180°-2∠ODE,
∠BEO=180°-2∠OED,
∴2∠O=∠ODC+∠BEO;
(2)2∠O=∠ODC-∠BEO.理由如下:
如图2,设DO交AB于点F,
∵∠ODC=∠A+∠DFA,∠DFA=∠O+∠BEO,
∴∠ODC=∠A+∠O+∠BEO,
∴∠ODC-∠BEO=∠A+∠O,
∵△ODE是由△ADE沿直线DE折叠而得,
∴∠A=∠O,
∴2∠O=∠ODC-∠BEO;
(3)∠1+∠3+∠5+∠7=∠2+2∠4+∠6或∠1+∠3+∠5+∠7=4∠4.理由如下:
如图3,由(1)的结论及折叠的性质可知,2∠4=∠2+∠6,2∠6=∠5+∠7,2∠2=∠1+∠3,
∴∠1+∠3+∠5+∠7+∠2+∠6=2∠2+2∠6+2∠4,
∴∠1+∠3+∠5+∠7=∠2+2∠4+∠6,
∵2∠4=∠2+∠6,
∴∠1+∠3+∠5+∠7=4∠4.
如图1,∵把三角形纸片ABC的角A沿DE折起,点A的对称点为点O,
∴∠A=∠O,∠ADE=∠ODE,∠AED=∠OED.
∵∠O+∠ODE+∠OED=180°,
∠ODC+∠ODE+∠EDA=180°,
∠BEO+∠DEO+∠AED=180°,
∴2∠O=360°-2∠0DE-2∠OED,
∠ODC=180°-2∠ODE,
∠BEO=180°-2∠OED,
∴2∠O=∠ODC+∠BEO;
(2)2∠O=∠ODC-∠BEO.理由如下:
如图2,设DO交AB于点F,
∵∠ODC=∠A+∠DFA,∠DFA=∠O+∠BEO,
∴∠ODC=∠A+∠O+∠BEO,
∴∠ODC-∠BEO=∠A+∠O,
∵△ODE是由△ADE沿直线DE折叠而得,
∴∠A=∠O,
∴2∠O=∠ODC-∠BEO;
(3)∠1+∠3+∠5+∠7=∠2+2∠4+∠6或∠1+∠3+∠5+∠7=4∠4.理由如下:
如图3,由(1)的结论及折叠的性质可知,2∠4=∠2+∠6,2∠6=∠5+∠7,2∠2=∠1+∠3,
∴∠1+∠3+∠5+∠7+∠2+∠6=2∠2+2∠6+2∠4,
∴∠1+∠3+∠5+∠7=∠2+2∠4+∠6,
∵2∠4=∠2+∠6,
∴∠1+∠3+∠5+∠7=4∠4.
看了 (1)如图(1),把三角形纸...的网友还看了以下:
(1)割线AC与圆O相交于B,C两点,E是弧BC的中点,D是圆O上一点,若角EDA=角AMD证:A 2020-05-13 …
8 .称之为美国式审计的标志,是它率先实行了( )。A .舞弊审计B .资产负债表审计C .管理审计 2020-05-21 …
固定卷扬式启闭机分为( )吊点和( )吊点两种。A.无B.单C.双D.三E.四 2020-05-27 …
如图,在△ABC中,AB=AC,点D在BC上,BD=DC,过点D作DE⊥AC,垂足为E,O经过A, 2020-06-12 …
如图,在直角三角尺ABC中,∠C=90°,把直角三角尺ABC放置在圆上,AB经过圆心O,AC与⊙O 2020-07-16 …
在⊙O中,F、G是直径AB上的两点,C、D、E是半圆上的三点.如果弧AC的度数为60°,弧BE的度 2020-07-29 …
如图,已知AB是圆O的直径,点C、D在圆O上,点E在圆O外,角EAC=角D=60°(1)求证:A如 2020-07-31 …
如图,在Rt△ABC中,∠ABC=90°,D是AC的中点,⊙O经过A、B、D三点,CB的延长线交⊙ 2020-08-01 …
三角形ABC内接与圆o,点P是三角形ABC的内切圆的圆心,AP交边BC于点D,交圆o于点E,经过点 2020-08-01 …
选出划线部分不同的一项1.Ahear(ear)B.pear(ear)Cthere(ere)D.whe 2020-10-29 …