早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为-116-116.

题目详情
定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为
-
1
16
-
1
16
▼优质解答
答案和解析
当x∈[-2,-1]时,x+2∈[0,1],
∴f(x+2)=(x+2)2-(x+2)=x2+3x+2,
又f(x+1)=2f(x),
∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),
∴4f(x)=x2+3x+2(-2≤x≤-1),
∴f(x)=
1
4
(x2+3x+2)=
1
4
(x+
3
2
)2-
1
16
(-2≤x≤-1),
∴当x=-
3
2
时,f(x)取得最小值-
1
16

故答案为:-
1
16