早教吧作业答案频道 -->其他-->
定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为-116-116.
题目详情
定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为
-
1 |
16 |
-
.1 |
16 |
▼优质解答
答案和解析
当x∈[-2,-1]时,x+2∈[0,1],
∴f(x+2)=(x+2)2-(x+2)=x2+3x+2,
又f(x+1)=2f(x),
∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),
∴4f(x)=x2+3x+2(-2≤x≤-1),
∴f(x)=
(x2+3x+2)=
(x+
)2-
(-2≤x≤-1),
∴当x=-
时,f(x)取得最小值-
;
故答案为:-
.
∴f(x+2)=(x+2)2-(x+2)=x2+3x+2,
又f(x+1)=2f(x),
∴f(x+2)=f[(x+1)+1]=2f(x+1)=4f(x),
∴4f(x)=x2+3x+2(-2≤x≤-1),
∴f(x)=
1 |
4 |
1 |
4 |
3 |
2 |
1 |
16 |
∴当x=-
3 |
2 |
1 |
16 |
故答案为:-
1 |
16 |
看了 定义域为R的函数f(x)满足...的网友还看了以下:
若f(x)在R上是奇函数,且f(1)=0.f(x)/x的导数大于0(x大于0).则f(x)/x在x小 2020-03-31 …
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
一道有关微积分中值定理的题目已知函数f(x)在区间【0,1】上连续,在(0,1)内可导,且f(0) 2020-05-16 …
已知函数fx满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立 2020-06-12 …
设函数f(x)在区间0,1上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1, 2020-06-22 …
Catalan数公式推导请教如何把下列递归公式f(n)=f(0)*f(n-1-0)+f(1)*(n 2020-06-28 …
F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx->1f(x)/x-1= 2020-07-26 …
不定积分题和其他题.F(x)在[0,1]上二阶可导,且limx->0f(x)/x=1,limx-> 2020-07-30 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
在判断断点时:如函数f(x)=(x^2-1)/(x-1)中做的时候f(1-0)=f(1+0)=2这是 2020-11-18 …