早教吧作业答案频道 -->数学-->
已知函数fx满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,x>0时,f(x)>21)求f(0)的值,并证明当x<0时1<f(x)<2:2)判断f(x)的单调性并加以证明:3)若g(x)=│f(x)-k│在(-∞,0)上递
题目详情
已知函数fx满足:对任意x,y∈R,都有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立,x>0时,f(x)>2
1)求f(0)的值,并证明当x<0时1<f(x)<2:
2)判断f(x)的单调性并加以证明:
3)若g(x)=│f(x)-k│在(-∞,0)上递减,求实数k的取值范围.
1)求f(0)的值,并证明当x<0时1<f(x)<2:
2)判断f(x)的单调性并加以证明:
3)若g(x)=│f(x)-k│在(-∞,0)上递减,求实数k的取值范围.
▼优质解答
答案和解析
(1)解析:∵函数f(x)满足对任意x,y∈R,都是有f(x+y)=f(x)f(y)-f(x)-f(y)+2成立
令x=y=0代入得f(0+0)=f(0)^2-2f(0)+2==>f(0)^2-3f(0)+2=0==>f(0)=1或2
令x=0==>f(0+y)=f(0)f(y)-f(0)-f(y)+2
若f(0)=1,则f(y)=1
∵x>0时,f(x)>2
∴f(0)=1与x>0时f(x)>2不符
故f(0)=2
当xf(x)f(-x)-f(x)-f(-x)=0f(-x)=f(x)/(f(x)-1)=2+1/[f(x)-1] >2∴01
∴f(x2)-f(x1)>0,f(x)在R上单调增.
(3)解析:令g(x)=|f(x)-k|=|f(x)-k|,在(-∞,0)上递减
∵f(x)-k在R是单调增
当x=0时,f(0)-k=2-k
令2-kk>=2
∴g(x)在(-∞,0)上递减,实数k的取值范围为k>=2
令x=y=0代入得f(0+0)=f(0)^2-2f(0)+2==>f(0)^2-3f(0)+2=0==>f(0)=1或2
令x=0==>f(0+y)=f(0)f(y)-f(0)-f(y)+2
若f(0)=1,则f(y)=1
∵x>0时,f(x)>2
∴f(0)=1与x>0时f(x)>2不符
故f(0)=2
当xf(x)f(-x)-f(x)-f(-x)=0f(-x)=f(x)/(f(x)-1)=2+1/[f(x)-1] >2∴01
∴f(x2)-f(x1)>0,f(x)在R上单调增.
(3)解析:令g(x)=|f(x)-k|=|f(x)-k|,在(-∞,0)上递减
∵f(x)-k在R是单调增
当x=0时,f(0)-k=2-k
令2-kk>=2
∴g(x)在(-∞,0)上递减,实数k的取值范围为k>=2
看了 已知函数fx满足:对任意x,...的网友还看了以下:
已知函数f(x)对任意x,y属于R,满足条件f(x)+f(y)=2+f(x+y)且当x大于0时,f 2020-04-26 …
已知函数f(x)对任意x,y属于R,满足条件f(x)+f(y)=2+f(x+y)且当x大于0时,f 2020-04-26 …
已知函数f(x)满足:对任意实数m,n都有f(m+n)=f(m)+f(n)-1已知函数f(x)满足 2020-05-17 …
一道奇怪的数学证明题:设定义在R上的连续函数f(x)满足f'(x)=f(x)且有f(0)=0,证一 2020-06-22 …
可积性证明f(x)=xsin(1/x)x不等于零0x=0这个分段函数在平[0,1]上是可积的,请问 2020-07-29 …
若f(x)是单调(或连续)函数且满足f(x+y)=f(x)+f(y)(x,y∈R)、则f(x)=x 2020-07-30 …
设f(x)=1-(1/x+1),x大于等于0.1.用单调性证明f(x)在定义域上是增函数2.设g(x 2020-11-02 …
已知f(x)是定义在(-∞,+∞)上的不恒为零的函数且对于定义域内的任意x、y,f(x)都满足f(x 2020-11-10 …
已知f(x)对于任意实数x,y满足f(x+y)=f(x)+f(y),当x>0时,f(x)>0.(Ⅰ) 2020-12-27 …
设函数f(x)满足条件f(x+y)=f(x)+f(y)且f(x)在x=0处连续证明f(x)设函数f( 2021-02-13 …