早教吧作业答案频道 -->数学-->
已知x²+y²+z²=1,且x,y,z≥0求证:1≤x/(1+yz)+y/(1+xz)+z/(1+xy)≤√2
题目详情
已知x²+y²+z²=1,且x,y,z≥0
求证:1≤x/(1+yz)+y/(1+xz)+z/(1+xy)≤√2
求证:1≤x/(1+yz)+y/(1+xz)+z/(1+xy)≤√2
▼优质解答
答案和解析
利用放缩法来解决,x/(1+yz)+y/(1+xz)+z/(1+xy)大于等于x/(yz)+y/(xz)+z/(xy)大于等于x²+y²+z²/xyz=1/xyz大于等于1
看了 已知x²+y²+z²=1,且...的网友还看了以下: