早教吧作业答案频道 -->数学-->
如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.(1)求∠B的度数;(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长
题目详情
如图,在△ABC中,点D在边AB上,且DB=DC=AC,已知∠ACE=108°,BC=2.
(1)求∠B的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比
.
①写出图中所有的黄金三角形,选一个说明理由;
②求AD的长;
③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.
(1)求∠B的度数;
(2)我们把有一个内角等于36°的等腰三角形称为黄金三角形.它的腰长与底边长的比(或者底边长与腰长的比)等于黄金比
| ||
2 |
①写出图中所有的黄金三角形,选一个说明理由;
②求AD的长;
③在直线AB或BC上是否存在点P(点A、B除外),使△PDC是黄金三角形?若存在,在备用图中画出点P,简要说明画出点P的方法(不要求证明);若不存在,说明理由.
▼优质解答
答案和解析
(1)∵BD=DC=AC.
则∠B=∠DCB,∠CDA=∠A.
设∠B=x,则∠DCB=x,∠CDA=∠A=2x.
又∠BOC=108°,
∴∠B+∠A=108°.
∴x+2x=108,x=36°.
∴∠B=36°;
(2)①有三个:△BDC,△ADC,△BAC.
∵DB=DC,∠B=36°,
∴△DBC是黄金三角形,
(或∵CD=CA,∠ACD=180°-∠CDA-∠A=36°.
∴△CDA是黄金三角形.
或∵∠ACE=108°,
∴∠ACB=72°.又∠A=2x=72°,
∴∠A=∠ACB.
∴BA=BC.
∴△BAC是黄金三角形.
②△BAC是黄金三角形,
∴
=
,
∵BC=2,∴AC=
-1.
∵BA=BC=2,BD=AC=
-1,
∴AD=BA-BD=2-(
-1)=3-
,
③存在,有三个符合条件的点P1、P2、P3.
ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.
ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点 P3.
则∠B=∠DCB,∠CDA=∠A.
设∠B=x,则∠DCB=x,∠CDA=∠A=2x.
又∠BOC=108°,
∴∠B+∠A=108°.
∴x+2x=108,x=36°.
∴∠B=36°;
(2)①有三个:△BDC,△ADC,△BAC.
∵DB=DC,∠B=36°,
∴△DBC是黄金三角形,
(或∵CD=CA,∠ACD=180°-∠CDA-∠A=36°.
∴△CDA是黄金三角形.
或∵∠ACE=108°,
∴∠ACB=72°.又∠A=2x=72°,
∴∠A=∠ACB.
∴BA=BC.
∴△BAC是黄金三角形.
②△BAC是黄金三角形,
∴
AC |
BC |
| ||
2 |
∵BC=2,∴AC=
5 |
∵BA=BC=2,BD=AC=
5 |
∴AD=BA-BD=2-(
5 |
5 |
③存在,有三个符合条件的点P1、P2、P3.
ⅰ)以CD为底边的黄金三角形:作CD的垂直平分线分别交直线AB、BC得到点P1、P2.
ⅱ)以CD为腰的黄金三角形:以点C为圆心,CD为半径作弧与BC的交点为点 P3.
看了 如图,在△ABC中,点D在边...的网友还看了以下:
已知|a→|=4,e→为单位向量,当a→,e→的夹角为2π3时,a→+e→在a→−e→上的投影为( 2020-04-07 …
已知点P在曲线y=4/(e^x+10)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是()A[ 2020-04-11 …
已知点P在曲线y=4/(e^x+1)上,a为曲线在点P处的切线的倾斜角,则a的取值范围是y=4/[ 2020-04-11 …
解数学题-E组比赛几场?A.B.C.D.E五个小组开展扑克牌比赛,每两个小组间都要比赛一场,到现在 2020-05-13 …
下列转化关系中的A-E均为有机物(部分反应条件和产物已略去),其中PLA是一种可降解的了绿色分子材 2020-05-17 …
圆的基本概念题:已知点A、B、C在直线a上,点E、D在直线a外,且任意三点不在一个圆上,则这些点最 2020-05-21 …
纵横字谜之英语暑假作业题(s)(o)(r)(r)(n)(g)(r)(e))(a)(k)(k)(e) 2020-06-06 …
大家看看我这个矩阵的证明哪里有问题已知A,B为n阶方阵,且B=B^2,A=B+E,证明A可逆,并求 2020-06-09 …
设n(n≥2)阶矩阵A满足(E-A)(E+A)=O,其中E为n阶单位矩阵,若已知E+A的秩r(E+ 2020-06-12 …
已知函数f(x)=xlnx+et-a,若对任意的t∈[0,1],f(x)在(0,e)上总有唯一的零 2020-06-12 …