早教吧作业答案频道 -->其他-->
∫sinx/xdx=?我算了很久都算不出来,怎样算呢?
题目详情
∫sinx/xdx=?
我算了很久都算不出来,怎样算呢?
我算了很久都算不出来,怎样算呢?
▼优质解答
答案和解析
这是一个超越积分(通常也称为不可积),也就是说这个积分的原函数不能用我们所学的任何一种函数来表示.但如果引入新的函数erf(x)=∫[0,x]e^(-t^2)dt,那么该函数的积分就可表示为erf(x)+c.
道理很简单,比如∫x^ndx,一般的该积分为1/(n+1)x^(n+1),如果不引入lnx,那么∫1/xdx就不可积了.因此对于一些积分,如果不引入新的函数,那么那些积分就有可能不可积,而且这种情况还会经常遇到.因此对于一些常见的超越积分,一般都定义了相关的新函数.
下面就介绍几个常见的超越积分(不可积积分)
1.∫e^(ax^2)dx(a≠0)
2.∫(sinx)/xdx
3.∫(cosx)/xdx
4.∫sin(x^2)dx
5.∫cos(x^2)dx
6.∫x^n/lnxdx(n≠-1)
7.∫lnx/(x+a)dx(a≠0)
8.∫(sinx)^zdx(z不是整数)
9.∫dx/√(x^4+a)(a≠0)
10.∫√(1+k(sinx)^2)dx(k≠0,k≠-1)
11.∫dx/√(1+k(sinx)^2)(k≠0,k≠-1)
以后凡是看到以上形式的积分,我劝你不要继续尝试,因为以上积分都已经被证明了为不可积积分.但是要注意的是,虽然以上积分的原函数不是初等函数,但并不意味着他们的定积分不可求,对于某些特殊点位置的定积分还是有可能算出来的,只不过不能用牛顿-莱布尼茨公式罢了!
比如∫[0,+∞)e^(-x^2)dx=√π/2,此处的积分值就是用二重积分和极限夹逼的方法得出的,而且只能算出(-∞,+∞)或是(0,+∞)上的值,其他的值只能用数值方法算出近似值.
再如∫[0,+∞)(sinx)/xdx=π/2,此处就是用留数理论得出的
道理很简单,比如∫x^ndx,一般的该积分为1/(n+1)x^(n+1),如果不引入lnx,那么∫1/xdx就不可积了.因此对于一些积分,如果不引入新的函数,那么那些积分就有可能不可积,而且这种情况还会经常遇到.因此对于一些常见的超越积分,一般都定义了相关的新函数.
下面就介绍几个常见的超越积分(不可积积分)
1.∫e^(ax^2)dx(a≠0)
2.∫(sinx)/xdx
3.∫(cosx)/xdx
4.∫sin(x^2)dx
5.∫cos(x^2)dx
6.∫x^n/lnxdx(n≠-1)
7.∫lnx/(x+a)dx(a≠0)
8.∫(sinx)^zdx(z不是整数)
9.∫dx/√(x^4+a)(a≠0)
10.∫√(1+k(sinx)^2)dx(k≠0,k≠-1)
11.∫dx/√(1+k(sinx)^2)(k≠0,k≠-1)
以后凡是看到以上形式的积分,我劝你不要继续尝试,因为以上积分都已经被证明了为不可积积分.但是要注意的是,虽然以上积分的原函数不是初等函数,但并不意味着他们的定积分不可求,对于某些特殊点位置的定积分还是有可能算出来的,只不过不能用牛顿-莱布尼茨公式罢了!
比如∫[0,+∞)e^(-x^2)dx=√π/2,此处的积分值就是用二重积分和极限夹逼的方法得出的,而且只能算出(-∞,+∞)或是(0,+∞)上的值,其他的值只能用数值方法算出近似值.
再如∫[0,+∞)(sinx)/xdx=π/2,此处就是用留数理论得出的
看了 ∫sinx/xdx=?我算了...的网友还看了以下:
次方怎么打?要打出一个X的n次方,怎么打?X^n类型的不要来了,我是说x²这样的,搜狗上只能打出平 2020-05-15 …
用列举法的集合问题题目是这样的:A={X∈N|9-X/9∈N}用列举法表示出来....9-X/9为 2020-05-17 …
急...字母表示.一条河L米,一个人在静水中的速度为X米每秒,水速为N米每秒,来回一趟的时间为T, 2020-07-09 …
关于函数导数的问题1、求函数f(x)=x^n(n属于正自然数)在x=a处的导数.f'(a)=(x^ 2020-07-21 …
设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x∉N},则M-(M-N)等于( 2020-07-30 …
我又问数学题来了.1.x=1-1/y,y=1-1/z,则用z表示x为?2.﹙2m/m+2-m/m- 2020-07-30 …
计算级数x+4x^2+9x^3+.+(n^2)x^n想了很久,不知道如何下手,请指教, 2020-10-31 …
(x-y)(x+y)=x^2-y^2(x-y)(x^2+xy+y^2)=x^3-y^3……(x-y) 2020-11-03 …
那个利用求导的方法求函数极限的方法学名叫什么……RT,比如说(x+x^2+x^3+...+x^n-n 2020-11-15 …
求证:x^n-a^n=(x-a)*[x^(n-1)+a*x^(n-2)+a^2*x^(n-3)+.. 2020-11-15 …