早教吧作业答案频道 -->其他-->
数列{an}中,a1=1,a2=2.数列{bn}满足bn=an+1+(-1)nan,n∈N+.(1)若数列{an}是等差数列,求数列{bn}的前6项和S6;(2)若数列{bn}是公差为2的等差数列,求数列{an}的通项公式.
题目详情
数列{an}中,a1=1,a2=2.数列{bn}满足bn=an+1+(-1)nan,n∈N+.
(1)若数列{an}是等差数列,求数列{bn}的前6项和S6;
(2)若数列{bn}是公差为2的等差数列,求数列{an}的通项公式.
(1)若数列{an}是等差数列,求数列{bn}的前6项和S6;
(2)若数列{bn}是公差为2的等差数列,求数列{an}的通项公式.
▼优质解答
答案和解析
(1)∵数列{an}是等差数列,a1=1,a2=2,∴an=n.再由数列{bn}满足bn=an+1+(-1)nan,n∈N+.
可得 b1=b3=b5=1,b2=5,b4=9,b6=13,∴数列{bn}的前6项和S6=30.
(2)∵数列{bn}是公差为2的等差数列,b1=a2-a1=1,∴bn =2n-1.
再由bn=an+1+(-1)nan可得b2n-1=a2n-a2n-1=4n-3,b2n=a2n+1+a2n=4n-1.
相减可得 a2n+1+a2n-1=2,a2n+3+a2n+1=2,∴a2n+3=a2n-1.
∵a1=1,a3=1,∴a4n-3=a1=1,a4n-1=a3=1.
∴an=
.
可得 b1=b3=b5=1,b2=5,b4=9,b6=13,∴数列{bn}的前6项和S6=30.
(2)∵数列{bn}是公差为2的等差数列,b1=a2-a1=1,∴bn =2n-1.
再由bn=an+1+(-1)nan可得b2n-1=a2n-a2n-1=4n-3,b2n=a2n+1+a2n=4n-1.
相减可得 a2n+1+a2n-1=2,a2n+3+a2n+1=2,∴a2n+3=a2n-1.
∵a1=1,a3=1,∴a4n-3=a1=1,a4n-1=a3=1.
∴an=
|
看了 数列{an}中,a1=1,a...的网友还看了以下:
已知正项等比数列{an}{n∈N*},首项a1=3,前n项和为Sn,且S3+a3、S5+a5、S4 2020-05-13 …
数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn(1)求A3n-2 2020-05-15 …
数列{a n }的通项公式为an=n2*cos(2nπ/3),其前n项和为Sn求A3n-2 +A3 2020-05-15 …
sinA=√5/5sin(A+B)=-√10/10A,B属于(0,π/2)求B若曲线y=f(x)= 2020-05-20 …
高考若数列{an}满足,a1=1,且a(n+1)=an/(1+an),设数列{bn}的前n项和为S 2020-05-22 …
1.各项均为正数的无穷等比数列{an}前n项和为Sn,若a1×a2×a3=8,且3(a2+a4+. 2020-05-23 …
三角形abc中(A+B+C)(a-b+c)在三角形ABC中,若(a+b+c)(a-b+c)=ac, 2020-07-22 …
在三角形ABC中、abc分别是角ABC对边.且SIN(B+兀/4)-SIN(B-兀/4)=根号2/ 2020-08-02 …
请教一道代数题:若(b^2+c^2-a^2)/2bc+……若(b^2+c^2-a^2)/2bc+(c 2020-11-06 …
已知数列{an}的前n项和为Sn,且满足Sn=2an-n若bn=log2(an+1),在bk(k为下 2020-11-19 …