早教吧作业答案频道 -->数学-->
若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=.
题目详情
若二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=(C1+C2x)ex,则非齐次方程y″+ay′+by=x满足条件y(0)=2,y′(0)=0的解为y=______.
▼优质解答
答案和解析
因为常系数线性齐次微分方程y″+ay′+by=0 的通解为
y=(C1+C2 x)ex,
故 r1=r2=1为其特征方程的重根,且其特征方程为
(r-1)2=r2-2r+1,
故 a=-2,b=1.
对于非齐次微分方程为y″-2y′+y=x,
设其特解为 y*=Ax+B,
代入y″-2y′+y=x 可得,
0-2A+(Ax+B)=x,
整理可得
(A-1)x+(B-2A)=0,
所以 A=1,B=2.
所以特解为 y*=x+2,
通解为 y=(C1+C2 x)ex +x+2.
将y(0)=2,y(0)=0 代入可得,
C1=0,C2=-1.
故所求特解为 y=-xex+x+2.
故答案为-xex+x+2.
y=(C1+C2 x)ex,
故 r1=r2=1为其特征方程的重根,且其特征方程为
(r-1)2=r2-2r+1,
故 a=-2,b=1.
对于非齐次微分方程为y″-2y′+y=x,
设其特解为 y*=Ax+B,
代入y″-2y′+y=x 可得,
0-2A+(Ax+B)=x,
整理可得
(A-1)x+(B-2A)=0,
所以 A=1,B=2.
所以特解为 y*=x+2,
通解为 y=(C1+C2 x)ex +x+2.
将y(0)=2,y(0)=0 代入可得,
C1=0,C2=-1.
故所求特解为 y=-xex+x+2.
故答案为-xex+x+2.
看了 若二阶常系数线性齐次微分方程...的网友还看了以下:
y的四阶导数+y=2*e^xy(0)=y`(0)=y``(0)=y```(0)=1在x=0处y的值 2020-06-04 …
1.设函数x^2+y^2≠0时,f(x,y)=xy/x^2+y^2;当x^2+y^2=0时,f(x 2020-06-12 …
(x,y)=(0,0)时,g(x,y)=0,它的二阶导数gyx(0,0)和gxy(0,0)等于多少 2020-08-01 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设x≥0,y≥0,x^2+(y^2/2)=11,设x≥0,y≥0,x^2+(y^2/2)=1,则x( 2020-10-31 …
设实数x>0,y>0,z>0,a>0,b>0,且x,y,z满足条件x^2+y^2-xy=a^2;x^ 2020-11-01 …
设实数x,y满足条件4x-y-10≤0;x-2y+8≥0;x≥0,y≤0,若目标函数z=ax+by( 2020-11-01 …
一个关于偏导数的问题二元函数f(x,y):当(x,y)≠(0,0)时f(x,y)=(xy)/(x^2 2020-11-01 …
一道高一关于函数的题目已知函数y=f(x)是定义在(0,+∞)的增函数,对于任意的x>0,y>0,都 2020-12-08 …
已知x,y为有理数,且x≠0,y≠0,求|x|/x+|y|/y的值.①已知x,y,z为有理数,且x≠ 2020-12-31 …