早教吧作业答案频道 -->数学-->
1.设函数x^2+y^2≠0时,f(x,y)=xy/x^2+y^2;当x^2+y^2=0时,f(x,y)=0.问f(x,y)在(0,0)处是否连续?计算计算f’x(0,0)和f’y(0,0)2.将函数f(x)=sin(x/2)展开成x的幂级数.3.将1/(5-x)展开成为x-2的幂级数.并指出收敛
题目详情
1.设函数x^2+y^2≠0时,f(x,y)=xy/x^2+y^2 ;当x^2+y^2=0时,f(x,y)=0.
问f(x,y)在(0,0)处是否连续?计算计算f’x (0,0)和f’y (0,0)
2.将函数f(x)=sin(x/2)展开成x的幂级数.
3.将1/(5-x)展开成为x-2的幂级数.并指出收敛域.
4.求函数f(x,y)=e^(x-y)(x^2-2y^2)的极值.
5.z=xarctan(y/x),求a^2z/axay ,a^z/ax^2,a^2z/ay^2.
6.求方程xy+lny-lnx=0所确定的隐函数y=f(x)的导数dy/dx.
问f(x,y)在(0,0)处是否连续?计算计算f’x (0,0)和f’y (0,0)
2.将函数f(x)=sin(x/2)展开成x的幂级数.
3.将1/(5-x)展开成为x-2的幂级数.并指出收敛域.
4.求函数f(x,y)=e^(x-y)(x^2-2y^2)的极值.
5.z=xarctan(y/x),求a^2z/axay ,a^z/ax^2,a^2z/ay^2.
6.求方程xy+lny-lnx=0所确定的隐函数y=f(x)的导数dy/dx.
▼优质解答
答案和解析
1.设函数x²+y²≠0时,f(x,y)=xy/(x²+y²) ;当x²+y²=0时,f(x,y)=0;问f(x,y)在(0,0)处是否连续?计算计算f’x (0,0)和f’y (0,0);
当x²+y²=0时,必有x=0且y=0,此时f(x,y)=f(0,0)=0,即函数z=f(x,y)在原点有定义0;
当动点P沿x轴趋近原点时,x➔0limf(x,0)=0;当动点P沿y轴趋近原点时,y➔0limf(0,y)=0;
可见动点无论沿x轴还是沿y轴趋近原点该函数都有极限0,且此极限=f(0,0)=0;但若动点不沿坐标
轴,而沿任意方向趋近原点,情况就不一样了!
令y=kx,k∈R;则【x➔0,y=kx➔0】limf(x,y)=【x➔0,y=kx➔0】limf(x,kx)
=【x➔0,y=kx➔0】limkx²/(x²+k²x²)=k/(1+k²),可见极限值与k有关;由此即可判断该函数f(x,y)在原点没有极限,极在原点不连续.f’x (0,0)=0,f’y (0,0)=0.
【在一元函数里,有导数必连续;但在多元函数里,所有偏导数都存在,但不一定连续,此即
为一例】
2.将函数f(x)=sin(x/2)展开成x的幂级数.
f(0)=0;f'(x)=(1/2)cos(x/2)=(1/2)sin(π/2+x);f''(x)=-(1/2²)sin(x/2)=(1/2²)sin(π+x/2);
f'''(x)=-(1/2³)cos(x/2)=(1/2³)sin(3π/2+x/2);f''''(x)=(1/2⁴)sin(x/2)=(1/2⁴)sin(2π+x/2);
.;f⁽ⁿ⁾(x)=(1/2ⁿ)sin(nπ/2+x/2).
f'(0)=1/2;f''(0)=0;f'''(0)=-1/2³;f''''(0)=0;.;f⁽ⁿ⁾(0)=(1/2ⁿ)sin(nπ/2);
故sin(x/2)=(1/2)x-[1/(2³▪3!)]x³+[1/(2⁵▪5!)]x⁵-[1/(2⁷▪7!)]x⁷+.
3.将1/(5-x)展开成为x-2的幂级数.并指出收敛域.【自己作吧!】
4.求函数f(x,y)=e^(x-y)(x²-2y²)的极值.
令∂f/∂x=e^(x-y)(x²-2y²)+2xe^(x-y)=[e^(x-y)](x²+2x-2y²)=0,得x²+2x-2y²=0.(1)
再令∂f/∂y=-e^(x-y)(x²-2y²)-4ye^(x-y)=-[e^(x-y)](x²+4y-2y²)=0,得x²+4y-2y²=0.(2)
(2)-(1)得4y-2x=0,故得x=2y,代入(1)式得4y²+4y-2y²=2y²+4y=2y(y+2)=0,故得y₁=0,y₂=-2;
相应地,x₁=0,x₂=-4;即有驻点P₁(0,0);P₂(-4,-2);
∂²f/∂x²=e^(x-y)(x²+2x-2y²)+e^(x-y)(2x+2)=e^(x-y)(x²+4x-2y²+2)
∂²f/∂x∂y=-e^(x-y)(x²+2x-2y²)-4ye^(x-y)=-e^(x-y)(x²+2x+4y-2y²)
∂²f/∂y²=e^(x-y)(x²+4y-2y²)-e^(x-y)(4-4y)=e^(x-y)(x²+8y-2y²-4)
对P₁(0,0):A=∂²f/∂x²=2;B=∂²f/∂x∂y=0;C=∂²f/∂y²=-4;B²-AC=0+16>0,
故P₁不是极值点;
对P₂(-4,-2):A=(1/e²)(16-16-8+2)=-6/e²;B=-(1/e²)(16-8-8-8)=-8/e²;
C=(1/e²)(16-16-8-4)=-12/e²
B²-AC=(64-72)/e⁴=-8/e⁴
当x²+y²=0时,必有x=0且y=0,此时f(x,y)=f(0,0)=0,即函数z=f(x,y)在原点有定义0;
当动点P沿x轴趋近原点时,x➔0limf(x,0)=0;当动点P沿y轴趋近原点时,y➔0limf(0,y)=0;
可见动点无论沿x轴还是沿y轴趋近原点该函数都有极限0,且此极限=f(0,0)=0;但若动点不沿坐标
轴,而沿任意方向趋近原点,情况就不一样了!
令y=kx,k∈R;则【x➔0,y=kx➔0】limf(x,y)=【x➔0,y=kx➔0】limf(x,kx)
=【x➔0,y=kx➔0】limkx²/(x²+k²x²)=k/(1+k²),可见极限值与k有关;由此即可判断该函数f(x,y)在原点没有极限,极在原点不连续.f’x (0,0)=0,f’y (0,0)=0.
【在一元函数里,有导数必连续;但在多元函数里,所有偏导数都存在,但不一定连续,此即
为一例】
2.将函数f(x)=sin(x/2)展开成x的幂级数.
f(0)=0;f'(x)=(1/2)cos(x/2)=(1/2)sin(π/2+x);f''(x)=-(1/2²)sin(x/2)=(1/2²)sin(π+x/2);
f'''(x)=-(1/2³)cos(x/2)=(1/2³)sin(3π/2+x/2);f''''(x)=(1/2⁴)sin(x/2)=(1/2⁴)sin(2π+x/2);
.;f⁽ⁿ⁾(x)=(1/2ⁿ)sin(nπ/2+x/2).
f'(0)=1/2;f''(0)=0;f'''(0)=-1/2³;f''''(0)=0;.;f⁽ⁿ⁾(0)=(1/2ⁿ)sin(nπ/2);
故sin(x/2)=(1/2)x-[1/(2³▪3!)]x³+[1/(2⁵▪5!)]x⁵-[1/(2⁷▪7!)]x⁷+.
3.将1/(5-x)展开成为x-2的幂级数.并指出收敛域.【自己作吧!】
4.求函数f(x,y)=e^(x-y)(x²-2y²)的极值.
令∂f/∂x=e^(x-y)(x²-2y²)+2xe^(x-y)=[e^(x-y)](x²+2x-2y²)=0,得x²+2x-2y²=0.(1)
再令∂f/∂y=-e^(x-y)(x²-2y²)-4ye^(x-y)=-[e^(x-y)](x²+4y-2y²)=0,得x²+4y-2y²=0.(2)
(2)-(1)得4y-2x=0,故得x=2y,代入(1)式得4y²+4y-2y²=2y²+4y=2y(y+2)=0,故得y₁=0,y₂=-2;
相应地,x₁=0,x₂=-4;即有驻点P₁(0,0);P₂(-4,-2);
∂²f/∂x²=e^(x-y)(x²+2x-2y²)+e^(x-y)(2x+2)=e^(x-y)(x²+4x-2y²+2)
∂²f/∂x∂y=-e^(x-y)(x²+2x-2y²)-4ye^(x-y)=-e^(x-y)(x²+2x+4y-2y²)
∂²f/∂y²=e^(x-y)(x²+4y-2y²)-e^(x-y)(4-4y)=e^(x-y)(x²+8y-2y²-4)
对P₁(0,0):A=∂²f/∂x²=2;B=∂²f/∂x∂y=0;C=∂²f/∂y²=-4;B²-AC=0+16>0,
故P₁不是极值点;
对P₂(-4,-2):A=(1/e²)(16-16-8+2)=-6/e²;B=-(1/e²)(16-8-8-8)=-8/e²;
C=(1/e²)(16-16-8-4)=-12/e²
B²-AC=(64-72)/e⁴=-8/e⁴
看了 1.设函数x^2+y^2≠0...的网友还看了以下:
设f(x)在x=a处连续,φ(x)在x=a处间断,又f(a)≠0,则()A.φ[f(x)]在x=a 2020-06-12 …
下列命题正确的是()A.若函数f(x)在x=a处连续,则函数f(x)在x=a的邻域内连续B.若函数 2020-06-12 …
证明一个函数处处可导设f(x)满足:1.f(x+y)=f(x)+f(y),对一切x,y属于R2.f 2020-06-12 …
1,曲线y=x^2上哪些点处的切线的倾角为45°,60°,2,若f(x)处处有切线,则函数y=f( 2020-07-09 …
设f(x)在x=Xo处连续,g(x)在x=Xo处不连续,f(x)+g(x)在x=Xo处连续,试证之 2020-07-10 …
关于函数的连续可导问题:设|f(x)|在x=a处可导,且f(a)=0,则f(x)在x=a处()设| 2020-07-15 …
.设f(x)在x.处可导,则lim△x→0△x分之f(x.-△x)-f(x.)等于?2.曲线y=3 2020-07-16 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
下列结论中正确的是A.f(x)在x=x0处连续,则一定在x0处可微B.f(x)在x=x0处不连续,则 2020-11-03 …
设函数f(x)满足条件f(x+y)=f(x)+f(y)且f(x)在x=0处连续证明f(x)设函数f( 2021-02-13 …