早教吧作业答案频道 -->数学-->
关于三角函数的求证?求证:[2-2*sin(x+3*pi/4)*cos(x+pi/4)]/(cos^4-sin^4)=(1+tanx)/(1-tanx)
题目详情
关于三角函数的求证?
求证:[2-2*sin(x+3*pi/4)*cos(x+pi/4)]/(cos^4-sin^4)
=(1+tanx)/(1-tanx)
求证:[2-2*sin(x+3*pi/4)*cos(x+pi/4)]/(cos^4-sin^4)
=(1+tanx)/(1-tanx)
▼优质解答
答案和解析
左边分母上应该是[(cosx)^4-(sinx)^4]吧!只有这样才能得证.
首先,sin(x+3π/4)=cos(x+π/4)
所以左边={2-2[cos(x+π/4)]^2}/{[(sinx)^2+(cosx)^2][(cosx)^2-(sinx)^2]}
=2[sin(x+π/4)]^2/[(cosx)^2-(sinx)^2]
=[1-cos(2x+π/2)]/cos2x
=[1-cos(2x+π/2)]/sin(2x+π/2)
=tan(x+π/4)(半角公式:tan(x/2)=(1-cosx)/sinx)
=(1+tanx)/(1-tanx)
=右边
所以等式成立.
首先,sin(x+3π/4)=cos(x+π/4)
所以左边={2-2[cos(x+π/4)]^2}/{[(sinx)^2+(cosx)^2][(cosx)^2-(sinx)^2]}
=2[sin(x+π/4)]^2/[(cosx)^2-(sinx)^2]
=[1-cos(2x+π/2)]/cos2x
=[1-cos(2x+π/2)]/sin(2x+π/2)
=tan(x+π/4)(半角公式:tan(x/2)=(1-cosx)/sinx)
=(1+tanx)/(1-tanx)
=右边
所以等式成立.
看了 关于三角函数的求证?求证:[...的网友还看了以下:
cos虏(x+蟺/4)-sin虏(x+蟺/4)杩欎釜镐庝箞鍖栫亩cos²(x+π/4)-sin²( 2020-04-06 …
无穷小代换,帮看看哪一步错了x→0lim[(sinx)sin(1-cos)^2]/(x^4+x^5 2020-04-27 …
y=sin^4(x/4)+cos^4(x/4)求导数y=sin^4(x/4)+cos^4(x/4) 2020-05-13 …
已知函数f(x)=cos(x+π/4)cos(x-π/4)+2tsinxcosx-sin(x+π/ 2020-05-16 …
高一数学三角函数问题已知函数f(x)=√3sin2x+2sin(x-π/4)sin(x+π/4), 2020-05-17 …
x=时,函数y=sin(x+π4)+sin(x-π4)的最大值为. 2020-05-23 …
一个关于导数的疑惑f(x)=(sinx-cosx)/x=√2sin(x-π/4)/x,导数f'(x 2020-06-10 …
1、王老师在今年初贷款a元,年利率为r,从今年末开始,每年末偿还一定金额,预计5年内还清,则每年应 2020-08-01 …
1、王老师在今年初贷款a元,年利率为r,从今年末开始,每年末偿还一定金额,预计5年内还清,则每年应 2020-08-01 …
三角函数已知函数f(x)=cos(2x-π/3)+2sin(x–π/4)sin(x+π/4)(1). 2020-12-08 …