早教吧作业答案频道 -->数学-->
已知函数f(x)=ex,g(x)=mx+n.(1)设h(x)=f(x)-g(x).当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=mf(x)+nxg(x),且n=4m(m>0),求证:x≥0时,
题目详情
已知函数f(x)=ex,g(x)=mx+n.
(1)设h(x)=f(x)-g(x).当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=
+
,且n=4m(m>0),求证:x≥0时,r(x)≥1.
(1)设h(x)=f(x)-g(x).当n=0时,若函数h(x)在(-1,+∞)上没有零点,求m的取值范围;
(2)设函数r(x)=
m |
f(x) |
nx |
g(x) |
▼优质解答
答案和解析
(1)当n=0时,h(x)=f(x)-g(x)=ex-mx.
若函数h(x)在(-1,+∞)上没有零点,
即ex-mx=0在(-1,+∞)上无解,
若x=0,则方程无解,满足条件,
若x≠0,则方程等价为m=
,
设g(x)=
,
则函数的导数g′(x)=
,
若-1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(-1)=-e-1,
若x>0,由g′(x)>0得x>1,
由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,
综上g(x)≥e或g(x)<-e-1,
若方程m=
无解,则-e-1≤m<e.
(2)∵n=4m(m>0),
∴函数r(x)=
+
=
+
=
+
,
则函数的导数r′(x)=
,
设h(x)=16ex-(x+4)2,
则h′(x)=16ex-2(x+4)=16ex-2x-8,
[h′(x)]′=16ex-2,
当x≥0时,[h′(x)]′=16ex-2>0,则h′(x)为增函数,即h′(x)>h′(0)=16-8=8>0,
即h(x)为增函数,∴h(x)≥h(0)=16-16=0,
即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,
故r(x)≥r(0)=
+0=1,
故当x≥0时,r(x)≥1成立.
若函数h(x)在(-1,+∞)上没有零点,
即ex-mx=0在(-1,+∞)上无解,
若x=0,则方程无解,满足条件,
若x≠0,则方程等价为m=
ex |
x |
设g(x)=
ex |
x |
则函数的导数g′(x)=
ex(x-1) |
x2 |
若-1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(-1)=-e-1,
若x>0,由g′(x)>0得x>1,
由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,
综上g(x)≥e或g(x)<-e-1,
若方程m=
ex |
x |
(2)∵n=4m(m>0),
∴函数r(x)=
m |
f(x) |
nx |
g(x) |
1 |
ex |
nx |
mx+n |
1 |
ex |
4x |
x+4 |
则函数的导数r′(x)=
16ex-(x+4)2 |
ex(x+4)2 |
设h(x)=16ex-(x+4)2,
则h′(x)=16ex-2(x+4)=16ex-2x-8,
[h′(x)]′=16ex-2,
当x≥0时,[h′(x)]′=16ex-2>0,则h′(x)为增函数,即h′(x)>h′(0)=16-8=8>0,
即h(x)为增函数,∴h(x)≥h(0)=16-16=0,
即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,
故r(x)≥r(0)=
1 |
e0 |
故当x≥0时,r(x)≥1成立.
看了 已知函数f(x)=ex,g(...的网友还看了以下:
在平面直角坐标系xOy中,点P在由直线,直线和直线所围成的区域内或其边界上,点Q在x轴上,若点R的 2020-06-14 …
已知P为椭圆上一点已知P为椭圆x^2/a^2+y^2/b^2=1(a>b>0)上一点,F1,F2为 2020-06-30 …
在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上 2020-07-19 …
已知函数f(x)=ex,g(x)=mx+n.(1)设h(x)=f(x)-g(x).当n=0时,若函 2020-07-20 …
已知点A(1,0).点R在y轴上运动,T在x轴上,N为动点,已知点A(1,0).点R在y轴上运动, 2020-07-22 …
如图,在△ABC中,∠A=90度,AB=AC=1,点P是AB上不与点A、B重合的一个动点,PQ⊥B 2020-07-24 …
1若切线斜率为k,则圆x²+y²=R²的切线方程为,y=kx+-R根号1+k²2若P(x0,y0) 2020-07-31 …
已知F是抛物线y2=4x的焦点,Q是其准线与x轴的交点,直线l过点Q,设直线l与抛物线交于点A,B 2020-07-31 …
如图,直线y=⊥x轴,B为垂足,S△ABP=9.(1)求点P的坐标;(2)设点R与点P在同一个反比例 2020-11-04 …
求一道向量题设向量P和向量Q是点P和点Q在平面中的向量,通过PQ两点的向量方程为r=(1-t)p+t 2020-11-30 …