如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2
如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=
AE2;④S△ABC=4S△ADF.其中正确的有( )2
A. 1个
B. 2 个
C. 3 个
D. 4个
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=
1 |
2 |
∵∠ABE=45°,
∴△ABE是等腰直角三角形,
∴AE=BE,
∵点F是AB的中点,
∴FE=
1 |
2 |
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中,
|
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD~△BCE,
∴
BC |
AB |
BE |
AD |
∵
2 |
∴BC•AD=
2 |
∵F是AB的中点,BD=CD,∴
S△ABC=2S△ABD=4S△ADF.④正确;
故选:D.
如图,⊙D的圆心坐标为(0,1).⊙D交y轴于点A(0,-2),交x轴于点C,过C的直线y=-2根 2020-05-13 …
如图,正方形ABCD的对角线AC、BD相交于点O,正方形A′B′C′D′的顶点A′与点O重合,A′ 2020-06-15 …
已知:在三角形ABC中,角C=90度,CM垂直AB于M,AT平分角BAC交CM于D,交BC于T,过 2020-07-17 …
如图所示,已知D为三角形ABC的BC边上一点,圆O1经过点B,D,交AB于另一点E,圆O2经过点C 2020-07-26 …
一个三角形ABC,角A为60度,角B角C的角平分线分别交AB于D交AC于E两线交于点F连接D,E有 2020-07-30 …
已知AB为圆的直径,CD垂直AB与圆交于C,垂足为D,以C为圆心,CD为半径作圆与前圆交于EF,EF 2020-11-27 …
1、线段是轴对称图形,它的对称轴是2、已知,△已ABC中,AB=AC=14cm,D是AB的中点,DE 2020-11-27 …
直线a,b,c,d交一点P,且a,b,c,d都与直线l相交,交点分别为A,B,C,D,求证a,b,c 2020-11-27 …
如图所示的病房区共有五间单人病房,住着A,B,C,D四位病人,根据不同的病情要求让A与D交换病房,C 2020-12-10 …
在三角形ABC中,AC边上一点D交BC反向延长线为E,且AD=EB,AB交DE于F点,求证EF:FB 2020-12-25 …