早教吧作业答案频道 -->数学-->
如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠AB
题目详情
如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=______度.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=______度.
▼优质解答
答案和解析
(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,
∵在△BCP和△DCP中,
,
∴△BCP≌△DCP(SAS);
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∵∠1=∠2(对顶角相等),
∴180°-∠1-∠CDP=180°-∠2-∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)与(2)同理可得:∠DPE=∠ABC,
∵∠ABC=58°,
∴∠DPE=58°.
故答案为:58.
∵在△BCP和△DCP中,
|
∴△BCP≌△DCP(SAS);
(2)证明:由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP,
∵PE=PB,
∴∠CBP=∠E,
∵∠1=∠2(对顶角相等),
∴180°-∠1-∠CDP=180°-∠2-∠E,
即∠DPE=∠DCE,
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC;
(3)与(2)同理可得:∠DPE=∠ABC,
∵∠ABC=58°,
∴∠DPE=58°.
故答案为:58.
看了 如图①,在正方形ABCD中,...的网友还看了以下:
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线 2020-05-13 …
如图所示:直线MN⊥RS于点O,点B在射线OS上,OB=2,点C在射线ON上,OC=2,点E是射线 2020-05-13 …
如图,梯形ABCD中,AD//BC,角DCB=45度,AD=2,过点C作CE⊥AB于点E,交对角线 2020-05-16 …
已知直线l过抛物线y*2=2px(p〉0)的焦点,并且与抛物线交于A(x1,x2)和B(y1,y2 2020-05-23 …
AB是半圆O的直径,CO⊥AB交半圆O于点C,连结AC,⊙O’与OC,AB及半圆O相切于E,F,G 2020-06-06 …
已知抛物线,y^2=4x,点C是抛物线上的动点,若以点C为圆心的圆在y轴上截得的弦长为4求证圆C过 2020-06-27 …
如图,O的直径AB的长为2,点C在圆周上,∠CAB=30°,点D是圆上一动点,DE∥AB交CA的延 2020-07-20 …
已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A、B两点,且OA•OB=2,其中O 2020-07-25 …
(2013•德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点 2020-07-31 …
如图,已知AB是圆O的直径,BC是圆O的弦,弦ED⊥AB于点F,交BC于点G,过点C作圆O的切线与 2020-07-31 …