早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(1)如图1,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;(2)请模仿正方形情景下构造全等三角形的思路,利用构造全

题目详情
(1)如图1,已知△ABC,以AB、AC为边分别向外作正方形ABFD和正方形ACGE,连结BE、CD,猜想BE与CD有什么数量关系?并说明理由;
(2)请模仿正方形情景下构造全等三角形的思路,利用构造全等三角形完成下题:如图2,要测量池塘两岸相对的两点B、E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长(结果保留根号).
作业帮
▼优质解答
答案和解析
作业帮 (1)CD=BE.
理由:如图①∵四边形ABFD和四边形ACGE都是正方形,
∴AD=AB,AC=AE,∠DAB=∠CAE=90°,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
AD=AB
∠DAC=∠BAE
AC=AE

∴△ADC≌△ABE(SAS),
∴CD=BE;

(2)如图②,在AB的外侧作AD⊥AB,使AD=AB,连结CD,BD,
∴∠DAB=90°,
∴∠ABD=∠ADB=45°.
∵∠ABC=45°,
∴∠ABD+∠ABC=45°+45°=90°,
即∠DBC=90°.
∴∠CAE=90°,
∴∠DAB=∠CAE,
∴∠DAB+∠BAC=∠CAE+∠BAC,
即∠DAC=∠BAE.
在△ADC和△ABE中
AD=AB
∠DAC=∠BAE
AC=AE

∴△ADC≌△ABE(SAS),
∴CD=BE.
∵AB=100m,在直角△ABD中,由勾股定理,得
BD=100
2

∴CD=
1002+(100
2
)2
=100
3

∴BE=CD=100
3

答:BE的长为100
3
米.