早教吧作业答案频道 -->数学-->
已知数列an中,a1=1,a(n+1)=an/(an+3)(n属于N*)数列bn满足bn=(3^n-1)n/2^n*an,求数列bn的前n项和
题目详情
已知数列an中,a1=1,a(n+1)=an/(an+3)(n属于N*)
数列bn满足bn=(3^n-1)n/2^n*an,求数列bn的前n项和
数列bn满足bn=(3^n-1)n/2^n*an,求数列bn的前n项和
▼优质解答
答案和解析
a(n+1)=an/(an+3)
a(n+1)+2 =an/(an+3)+2
= 3(an+2)/(an+3)
1/[a(n+1)+2] = (an+3)[3(an+2)]
= 1/3 + (1/3)[ 1/(an+2)]
1/[a(n+1)+2] -1/2 = (1/3) { [ 1/(an+2)] - 1/2 }
=>{ [ 1/(an+2)] - 1/2 }是等比数列,q=1/3
{ [ 1/(an+2)] - 1/2 }= (1/3)^(n-1).{ [ 1/(a1+2)] - 1/2 }
=-(1/2).(1/3)^n
1/(an+2) =(1/2)( 1- (1/3)^n)
an +2 = 2/( 1- (1/3)^n)
an = -2 +2/( 1- (1/3)^n)
= -2 + 2.3^n/(3^n -1)
= 2/(3^n -1)
let
S = 1.(1/2)^1+2.(1/2)^2+...+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2.(1/2)^3+...+n.(1/2)^(n+1) (2)
(1)-(2)
(1/2)S = (1/2+1/2^2+...+1/2^n) -n.(1/2)^(n+1)
= (1- (1/2)^n ) - n.(1/2)^(n+1)
bn=(3^n-1)n/(2^n*an)
=n/2^(n+1)
= (1/2)[ n.(1/2)^n ]
Tn =b1+b2+...+bn
=(1/2)S
= (1- (1/2)^n ) - n.(1/2)^(n+1)
= 1- (n+2)(1/2)^(n+1)
a(n+1)+2 =an/(an+3)+2
= 3(an+2)/(an+3)
1/[a(n+1)+2] = (an+3)[3(an+2)]
= 1/3 + (1/3)[ 1/(an+2)]
1/[a(n+1)+2] -1/2 = (1/3) { [ 1/(an+2)] - 1/2 }
=>{ [ 1/(an+2)] - 1/2 }是等比数列,q=1/3
{ [ 1/(an+2)] - 1/2 }= (1/3)^(n-1).{ [ 1/(a1+2)] - 1/2 }
=-(1/2).(1/3)^n
1/(an+2) =(1/2)( 1- (1/3)^n)
an +2 = 2/( 1- (1/3)^n)
an = -2 +2/( 1- (1/3)^n)
= -2 + 2.3^n/(3^n -1)
= 2/(3^n -1)
let
S = 1.(1/2)^1+2.(1/2)^2+...+n.(1/2)^n (1)
(1/2)S = 1.(1/2)^2+2.(1/2)^3+...+n.(1/2)^(n+1) (2)
(1)-(2)
(1/2)S = (1/2+1/2^2+...+1/2^n) -n.(1/2)^(n+1)
= (1- (1/2)^n ) - n.(1/2)^(n+1)
bn=(3^n-1)n/(2^n*an)
=n/2^(n+1)
= (1/2)[ n.(1/2)^n ]
Tn =b1+b2+...+bn
=(1/2)S
= (1- (1/2)^n ) - n.(1/2)^(n+1)
= 1- (n+2)(1/2)^(n+1)
看了 已知数列an中,a1=1,a...的网友还看了以下:
数列的通项an和与前n项之和Sn的关系(1)已知数列{an}的前n项之和Sn=3n^2-2n,求a 2020-04-09 …
已知数列{an}满足a1=-1,an+1-2an-3=0;数列{bn}满足bn=log2(an+3 2020-05-13 …
已知数列{an}是等差数列.a3=10,a6=22数列{bn}的前n项和为Sn且Sn+1/3bn= 2020-05-13 …
已知数列{an}的第1项是1,第2项是2,以后各项由an=an-1+an-2(n>2)给出.(1) 2020-05-14 …
已知数列{an}的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列{an}前n项和为S 2020-07-23 …
在各项均为正数的数列{an}中a1=三分之一且an+1-an+4an+1an=0通项公式前n项和在 2020-07-30 …
1、已知数列{an}的首项a1=0,且递推关系式为A=(An+1)/(3-An)(1)记Bn=1/ 2020-08-01 …
对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”对于数列{An},定义数列{A 2020-11-18 …
1.设数列{an}为等差数列,Sn为前n项和,S7=7,S15=75,Tn为数列{Sn/n}的前n项 2020-12-24 …
问几道数学题已知数列{an}的通项公式an=(n+1)(n+2)(1)若an=9900,问an是第几 2020-12-24 …