早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设函数f(x)=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,求a,b,c的值

题目详情
设函数f(x)=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4,求a,b,c的值
▼优质解答
答案和解析
函数y=x³+ax²+bx+c的图像过原点知:c=0
对y求导得:y'=3x²+2ax+b
因在原点相切,可知在x=0 时 y'=0得:b=0
把 b=0带入y的导数得:y'=3x²+2ax
令y'=0得:x=0或x=-2a/3
即当x=0或x=-2a/3函数y达到极值
把x=-2a/3带入函数得:y=(-2a/3)³+a(-2a/3)²=4a³ /27=-4得:a=-3