早教吧作业答案频道 -->数学-->
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴2.若M是OA的中点,在X轴上取点E,抛物线的对称轴上取点F,求使四边形AMEF周长最小的点E,F,并求出此时四边形AMFE的周长3,.在
题目详情
已知抛物线Y=aX2+bx+c经过点A(0,3)B(1,0) C(5,0)三点 1.求抛物线解析式及对称轴
2.若M是OA的中点,在X轴上取点E,抛物线的对称轴上取点F,求使四边形AMEF周长最小的点E,F,并求出此时四边形AMFE的周长
3,.在1的抛物线上是否存在点N,使得它与2中求得的点E所在直线EN恰好把三角形AEC分成面积相等的两部分?若存在,请你在图2中求出N的坐标 若不存在 请说明理由
2.若M是OA的中点,在X轴上取点E,抛物线的对称轴上取点F,求使四边形AMEF周长最小的点E,F,并求出此时四边形AMFE的周长
3,.在1的抛物线上是否存在点N,使得它与2中求得的点E所在直线EN恰好把三角形AEC分成面积相等的两部分?若存在,请你在图2中求出N的坐标 若不存在 请说明理由
▼优质解答
答案和解析
1、由B、C坐标可设解析式为:Y=a(X--1)(X--5)=aX²+bX+c 展开比较系数并由A点坐标得c=3代人得:a=3/5,b=--18/5 所以解析式为:Y=3/5X²-18/5X+3,对称轴X=(1+5)/2=3 2、过A点作对称轴X=3的对称点A′(在抛物线上),过M点作X轴的对称点M′,连接A′M′,交X轴、对称轴的交点分别为E、F点则四边形AMEF的周长最小,这时的周长可求:A′的坐标为(6,3)M′点坐标为(0,-3/2)所以A′M′直线方程可求:y=3/4x--3/2所以E(2,0),F(3,3/4) 所以周长=AM+ME+EF+FA=AM+M′E+EF+FA′=AM+M′A′=3/2+√[(6+3/2)²+3²]=3/2+(√261)/2 3、一定存在:作AC中点D,作直线DE必交抛物线于点N,D点坐标由中点公式可求:D(5/2,3/2) E点坐标(2,0)求得DE直线方程:y=3x--6,由直线方程和抛物线方程组成方程组可求交点坐标
看了 已知抛物线Y=aX2+bx+...的网友还看了以下:
如图,已知平面直角坐标系xOy,抛物线y=-x2+bx+c过点A(4,0),B(1,3).记该抛物 2020-05-16 …
凸透镜 物体移动 成像(物理竞赛)一焦距为f 的凸透镜主轴和水平轴x重合,透镜左边x轴上有一个点光 2020-05-16 …
已知等边三角形AOB中,OB在X轴正半轴上,OA=2,将三角形AOB绕点O逆时针旋转60°,点A与 2020-05-22 …
△AOB是边长为4+2倍根号3的等边三角形,其中O是坐标原点,顶点B在Y轴的正半轴上,将△OAB折 2020-06-14 …
如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点 2020-07-13 …
如图,正方形ABCD和正方形DEFG的顶点在y轴上,顶点D、F在x轴上,点C在DE边上,反比例函数 2020-07-19 …
如图,在平面直角坐标系中,Rt△ABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分∠BAC交 2020-07-20 …
如果凸n边形F(n≥4)的所有对角线都相等,那么A.F∈{四边形}B.F∈{五边形}C.F∈{四边 2020-07-25 …
(2012•连云港)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标 2020-11-12 …
直线y=x-6与x,y轴分别交于点A,B,E从B出发,以每秒一个单位的速度沿线段BO向O移动(E与B 2021-01-16 …