早教吧作业答案频道 -->数学-->
设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a>2时,讨论f(x)+|x|在R上的零点个数.
题目详情
设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范围;
(2)讨论f(x)的单调性;
(3)当a>2时,讨论f(x)+|x|在R上的零点个数.
(1)若f(0)≤1,求a的取值范围;
(2)讨论f(x)的单调性;
(3)当a>2时,讨论f(x)+|x|在R上的零点个数.
▼优质解答
答案和解析
(1)∵f(0)≤1
∴f(0)=(0-a)2+|x-a|-a(a-1)=a2+|a|-a(a-1)=|a|+a≤1
∴当a≤0时,不等式为0≤1恒成立,满足条件,
当a>0时,不等式为a+a≤1,
∴0
,
综上所述a的取值范围为(-∞,
];
(2)当x<a时,函数 f(x)=x2-(2a+1)x+2a,
其对称轴为x=
=a+
>a,此时y=f(x)在(-∞,a)时是减函数,
当x≥a时,f(x)=x2+(1-2a)x,
其对称轴为:x=a-
<a,y=f(x)在(a,+∞)时是增函数,
综上所述,f(x)在(a,+∞)上单调递增,在(-∞,a)上单调递减,
(3)设g(x)=f(x)+|x|=
,
当x≥a时,其对称轴为x=a-1,
当0≤x<a时,其对称轴为x=a,
当x>0时,其对称轴为x=a+1,
∴g(x)在(-∞,0)上单调递减,在(0,a)上单调递减,在(a,+∞)上单调递增,
∵g(0)=2a>0,g(a)=a2+(2-2a)a=2a-a2=-(a-1)2+1,
又a>2,
∴g(a)=-(a-1)2+1在(2,+∞)上单调递减,
∴g(a)<g(2)=0,
∴f(x)在(0,a)和(a,+∞)上各有一个零点,
综上所述a>2时,f(x)+|x|在R上有2个零点.
∴f(0)=(0-a)2+|x-a|-a(a-1)=a2+|a|-a(a-1)=|a|+a≤1
∴当a≤0时,不等式为0≤1恒成立,满足条件,
当a>0时,不等式为a+a≤1,
∴0
1 |
2 |
综上所述a的取值范围为(-∞,
1 |
2 |
(2)当x<a时,函数 f(x)=x2-(2a+1)x+2a,
其对称轴为x=
2a+1 |
2 |
1 |
2 |
当x≥a时,f(x)=x2+(1-2a)x,
其对称轴为:x=a-
1 |
2 |
综上所述,f(x)在(a,+∞)上单调递增,在(-∞,a)上单调递减,
(3)设g(x)=f(x)+|x|=
|
当x≥a时,其对称轴为x=a-1,
当0≤x<a时,其对称轴为x=a,
当x>0时,其对称轴为x=a+1,
∴g(x)在(-∞,0)上单调递减,在(0,a)上单调递减,在(a,+∞)上单调递增,
∵g(0)=2a>0,g(a)=a2+(2-2a)a=2a-a2=-(a-1)2+1,
又a>2,
∴g(a)=-(a-1)2+1在(2,+∞)上单调递减,
∴g(a)<g(2)=0,
∴f(x)在(0,a)和(a,+∞)上各有一个零点,
综上所述a>2时,f(x)+|x|在R上有2个零点.
看了 设a为实数,函数f(x)=(...的网友还看了以下:
已知函数f(x)=sinx+acos平方2分之x,a为常数,a∈R且x=2分之兀是方程f(x)=0 2020-05-13 …
才子来!X,Y属于R,F(X)+F(Y)=F(X+Y)+2,当X>0时,F(X)>2.求证:F(X 2020-05-23 …
已知函数f(x)对任意的a、b∈R,都有f(a+b)=f(a)+f(b)-1成立,当x>0时,f( 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
设函数f(x)=lnx+m/x,m∈R(1)当m=e(e为自然对数的底数时),求f(x)的极小值设 2020-07-26 …
已知集合M={f(x)|f(-x)=f(x),x∈R};N={f(x)|f(-x)=-f(x),x 2020-07-30 …
已知定义在R上的函数f(x)是奇函数且满足f(3/2-x)=f(x),f(3/2-x)=f(x)f 2020-08-01 …
f(x)是定义在R上的函数满足f(x)+f(x-1)=1.f(x)是定义在R上的函数满足f(x)+f 2020-11-19 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …