早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).(1)若f(0)≤1,求a的取值范围;(2)讨论f(x)的单调性;(3)当a>2时,讨论f(x)+|x|在R上的零点个数.

题目详情
设a为实数,函数f(x)=(x-a)2+|x-a|-a(a-1).
(1)若f(0)≤1,求a的取值范围;
(2)讨论f(x)的单调性;
(3)当a>2时,讨论f(x)+|x|在R上的零点个数.
▼优质解答
答案和解析
(1)∵f(0)≤1
∴f(0)=(0-a)2+|x-a|-a(a-1)=a2+|a|-a(a-1)=|a|+a≤1
∴当a≤0时,不等式为0≤1恒成立,满足条件,
当a>0时,不等式为a+a≤1,
∴0
1
2

综上所述a的取值范围为(-∞,
1
2
];
(2)当x<a时,函数 f(x)=x2-(2a+1)x+2a,
其对称轴为x=
2a+1
2
=a+
1
2
>a,此时y=f(x)在(-∞,a)时是减函数,
当x≥a时,f(x)=x2+(1-2a)x,
其对称轴为:x=a-
1
2
<a,y=f(x)在(a,+∞)时是增函数,
综上所述,f(x)在(a,+∞)上单调递增,在(-∞,a)上单调递减,
(3)设g(x)=f(x)+|x|=
x2+(2-2a)x,x≥a
x2-2ax+2a,0≤x<a
x2-(2a+2)x+2a,x<0

当x≥a时,其对称轴为x=a-1,
当0≤x<a时,其对称轴为x=a,
当x>0时,其对称轴为x=a+1,
∴g(x)在(-∞,0)上单调递减,在(0,a)上单调递减,在(a,+∞)上单调递增,
∵g(0)=2a>0,g(a)=a2+(2-2a)a=2a-a2=-(a-1)2+1,
又a>2,
∴g(a)=-(a-1)2+1在(2,+∞)上单调递减,
∴g(a)<g(2)=0,
∴f(x)在(0,a)和(a,+∞)上各有一个零点,
综上所述a>2时,f(x)+|x|在R上有2个零点.