早教吧作业答案频道 -->数学-->
(2002•宁德)如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B以1cm/s的速度移动,若AB长为10cm,点O到BC的距离为4cm.(1)求弦BC的长;(2)问经过几秒后△BPC是等腰三角形?
题目详情
(2002•宁德)如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B以1cm/s的速度移动,若AB长为10cm,点O到BC的距离为4cm.
(1)求弦BC的长;
(2)问经过几秒后△BPC是等腰三角形?
(1)求弦BC的长;
(2)问经过几秒后△BPC是等腰三角形?
▼优质解答
答案和解析
(1)作OD⊥BC于D,易求得BC=2BD=6cm;
(2)由题意知,PB=AB=10-t,故有三种情况,BP=BC或PC=PB或BC=BP,分别求解.
【解析】
(1)作OD⊥BC于D,由垂径定理知,点D是BC的中点,BD=BC,
∵OB=AB=5,OD=4,
由勾股定理得,BD==3,
∴BC=2BD=6cm;
(2)设经过t秒后,△BPC是等腰三角形,
①当PC为底边时,有BP=BC,10-t=6,解得:t=4(秒);
②当BC为底边时,有PC=PB,P点与O点重合,此时t=5(秒);
③当PB为底边时,有PC=BC,连接AC,作CE⊥AB于E,
则BE=,AE=,
∵AB是直径,
∴△ABC是直角三角形,
根据勾股定理AC===8,
由AC2-AE2=BC2-BE2,
64-()2=36-()2,
解得:t=2.8(秒).
综上,经过4秒或5秒或2.8秒时,△BPC是等腰三角形.
(2)由题意知,PB=AB=10-t,故有三种情况,BP=BC或PC=PB或BC=BP,分别求解.
【解析】
(1)作OD⊥BC于D,由垂径定理知,点D是BC的中点,BD=BC,
∵OB=AB=5,OD=4,
由勾股定理得,BD==3,
∴BC=2BD=6cm;
(2)设经过t秒后,△BPC是等腰三角形,
①当PC为底边时,有BP=BC,10-t=6,解得:t=4(秒);
②当BC为底边时,有PC=PB,P点与O点重合,此时t=5(秒);
③当PB为底边时,有PC=BC,连接AC,作CE⊥AB于E,
则BE=,AE=,
∵AB是直径,
∴△ABC是直角三角形,
根据勾股定理AC===8,
由AC2-AE2=BC2-BE2,
64-()2=36-()2,
解得:t=2.8(秒).
综上,经过4秒或5秒或2.8秒时,△BPC是等腰三角形.
看了 (2002•宁德)如图,AB...的网友还看了以下:
一个二次函数,其图象由抛物线y=1/2x^2向右平移一个单位,再向上平移k个单位(k>0)得到,平 2020-04-26 …
在所给直角坐标系中,画出一次函数y=1-2x的图像,(1)将直线y=1-2x向上平移2个单位,求平 2020-04-27 …
1.设a+b=3,则直线2ax-by=1恒过定点()2.直线l沿y轴正方向平移a个单位,再沿x轴的 2020-05-23 …
汉诺塔2^n-1的算法一定是次数最少吗?这个算法是认为移动n个盘子的次数是,把n-1次的都移到另一 2020-06-18 …
脂肪的从头合成中的调控点和调控因子是什么多谢啦那个忘了一个肉碱脂酰转移酶转移酶1的调控因子是啥是贝 2020-07-04 …
一次函数y=kx+b经过点(-1,1)和点(2,7).(1)求这个一次函数的解析表达式.(2)将所 2020-08-03 …
数轴上有一动点A,从原点出发沿着数轴移动,每次只允许移动1个单位.经过10次移动,A点移动到距离原点 2020-11-17 …
一小球第1秒内通过的位移为1米,第2秒内通过的位移为2米,第3秒内通过的位移为3米,第4秒内通过的位 2020-11-24 …
小球由静止开始运动,在第1秒内通过的位移为1米,在第2秒内通过的位移为2米,在第3秒内通过的位移为3 2020-12-09 …
七年级数学题1、甲、乙两队进行拔河比赛,标志物先向乙移动0.2m,又向甲移动0.5m,相持一会儿后, 2020-12-19 …