早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2002•宁德)如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B以1cm/s的速度移动,若AB长为10cm,点O到BC的距离为4cm.(1)求弦BC的长;(2)问经过几秒后△BPC是等腰三角形?

题目详情
(2002•宁德)如图,AB是半圆O的直径,BC是弦,点P从点A开始,沿AB向点B以1cm/s的速度移动,若AB长为10cm,点O到BC的距离为4cm.
(1)求弦BC的长;
(2)问经过几秒后△BPC是等腰三角形?

▼优质解答
答案和解析
(1)作OD⊥BC于D,易求得BC=2BD=6cm;
(2)由题意知,PB=AB=10-t,故有三种情况,BP=BC或PC=PB或BC=BP,分别求解.
【解析】
(1)作OD⊥BC于D,由垂径定理知,点D是BC的中点,BD=BC,
∵OB=AB=5,OD=4,
由勾股定理得,BD==3,
∴BC=2BD=6cm;
(2)设经过t秒后,△BPC是等腰三角形,
①当PC为底边时,有BP=BC,10-t=6,解得:t=4(秒);
②当BC为底边时,有PC=PB,P点与O点重合,此时t=5(秒);
③当PB为底边时,有PC=BC,连接AC,作CE⊥AB于E,
则BE=,AE=
∵AB是直径,
∴△ABC是直角三角形,
根据勾股定理AC===8,
由AC2-AE2=BC2-BE2
64-(2=36-(2
解得:t=2.8(秒).
综上,经过4秒或5秒或2.8秒时,△BPC是等腰三角形.
看了 (2002•宁德)如图,AB...的网友还看了以下: