早教吧作业答案频道 -->其他-->
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;(2)设点K是(1)中所得椭圆上的动点,求
题目详情
设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;
(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线写出具有类似特性的性质,并加以证明.
▼优质解答
答案和解析
(1)椭圆C的焦点在x轴上,由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2.
又点A(1,)在椭圆上,因此b2=3,于是c2=1.
所以椭圆C的方程为,焦点F1(-1,0),F2(1,0).
(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y),∴x1=2x+1,y1=2y.
因此.即为所求的轨迹方程.
(3)类似的性质为若MN是双曲线 -=1上关于原点对称的两个点,
点P是双曲线上任意一点,当直线PM、PN的斜率都存在,
并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.
设点M的坐标为(m,n),则点N的坐标为(-m,-n),
其中 -=1、又设点P的坐标为(x,y),
由kPM=,kPN=,
得kPM•kPN=•=,
将y2=x2-b2,n2=m2-b2,代入得kPM•kPN=.
又点A(1,)在椭圆上,因此b2=3,于是c2=1.
所以椭圆C的方程为,焦点F1(-1,0),F2(1,0).
(2)设椭圆C上的动点为K(x1,y1),线段F1K的中点Q(x,y),∴x1=2x+1,y1=2y.
因此.即为所求的轨迹方程.
(3)类似的性质为若MN是双曲线 -=1上关于原点对称的两个点,
点P是双曲线上任意一点,当直线PM、PN的斜率都存在,
并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.
设点M的坐标为(m,n),则点N的坐标为(-m,-n),
其中 -=1、又设点P的坐标为(x,y),
由kPM=,kPN=,
得kPM•kPN=•=,
将y2=x2-b2,n2=m2-b2,代入得kPM•kPN=.
看了 设F1、F2分别为椭圆C:=...的网友还看了以下:
1.设F1,F2分别为椭圆的左,右两个焦点. 若椭圆C上的点到F1,F2两点的距离之和等于4,写出 2020-05-16 …
数学椭圆问题1.已知椭圆X^2/144+y^2/25=1和直线l:y=x+m,若圆上存在两点A、B 2020-06-21 …
已知椭圆和圆O:x2+y2=b2,过椭圆上一点P引圆O的两条切线,切点分别为A,B,(Ⅰ)(ⅰ)若 2020-06-21 …
已知椭圆的中心在原点O,焦点在x轴上,过其右焦点F做斜率为1的直线l,交椭圆于A、B两点,若椭圆上 2020-06-21 …
若椭圆两焦点为F1(-4,0)、F2(4,0),椭圆的弦AB过点F1,且△ABF2的周长为20,那 2020-07-11 …
焦点在x轴上的椭圆方程x^2/a^2+y^2=1(a>0),F1,F2为椭圆的两个焦点,若椭圆上存 2020-07-20 …
已知椭圆x/8+y/6=1,与圆(x-1)+y=1相切的直线l:y=kx+t交椭圆于M、N两点,若 2020-07-24 …
已知椭圆和圆O:,过椭圆上一点P引圆O的两条切线,切点分别为A,B。(1)(ⅰ)若圆O过椭圆的两个 2020-07-31 …
已知椭圆和圆:,过椭圆上一点P引圆O的两条切线,切点分别为A,B.(1)(ⅰ)若圆O过椭圆的两个焦 2020-07-31 …
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)和圆O:x^2+y^2=b^2,过椭圆上一 2020-07-31 …