早教吧作业答案频道 -->数学-->
在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.(1)求点B的坐标;(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与
题目详情
在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.
▼优质解答
答案和解析
(1)由抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O,令x=0,y=0,解得m的值,点B(2,n)在这条抛物线上,把该点代入抛物线方程,解得n.
(2)设直线OB的解析式为y=k1x,求得直线OB的解析式为y=2x,由A点是抛物线与x轴的一个交点,可求得A点的坐标,设P点的坐标为(a,0),根据题意作等腰直角三角形PCD,如图1.可求得点C的坐标,进而求出OP的值,依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,求出直线AB的解析式,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况,解出各种情况下的时间t.
【解析】
(1)∵抛物线y=-x2+x+m2-3m+2经过原点,
∴m2-3m+2=0,
解得m1=1,m2=2,
由题意知m≠1,
∴m=2,
∴抛物线的解析式为y=-x2+x,
∵点B(2,n)在抛物线y=-x2+x上,
∴n=4,
∴B点的坐标为(2,4).
(2)设直线OB的解析式为y=k1x,
求得直线OB的解析式为y=2x,
∵A点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),
设P点的坐标为(a,0),
则E点的坐标为(a,2a),
根据题意作等腰直角三角形PCD,
如图1,可求得点C的坐标为(3a,2a),
由C点在抛物线上,
得:2a=-´(3a)2+´3a,
即a2-a=0,
解得a1=,a2=0(舍去),
∴OP=.
依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,
由点A(10,0),点B(2,4),求得直线AB的解析式为y=-x+5,
当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上.
如图2所示.可证△DPQ为等腰直角三角形.此时OP、DP、AQ的长可依次表示为t、4t、2t个单位.
∴PQ=DP=4t,
∴t+4t+2t=10,
∴t=.
第二种情况:PC与MN在同一条直线上.如图3所示.可证△PQM为等腰直角三
角形.此时OP、AQ的长可依次表示为t、2t个单位.
∴OQ=10-2t,
∵F点在直线AB上,
∴FQ=t,
∴MQ=2t,
∴PQ=MQ=CQ=2t,
∴t+2t+2t=10,
∴t=2.
第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示.此时OP、
AQ的长可依次表示为t、2t个单位.
∴t+2t=10,
∴t=.
综上,符合题意的t值分别为,2,
(2)设直线OB的解析式为y=k1x,求得直线OB的解析式为y=2x,由A点是抛物线与x轴的一个交点,可求得A点的坐标,设P点的坐标为(a,0),根据题意作等腰直角三角形PCD,如图1.可求得点C的坐标,进而求出OP的值,依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,求出直线AB的解析式,当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况,解出各种情况下的时间t.
【解析】
(1)∵抛物线y=-x2+x+m2-3m+2经过原点,
∴m2-3m+2=0,
解得m1=1,m2=2,
由题意知m≠1,
∴m=2,
∴抛物线的解析式为y=-x2+x,
∵点B(2,n)在抛物线y=-x2+x上,
∴n=4,
∴B点的坐标为(2,4).
(2)设直线OB的解析式为y=k1x,
求得直线OB的解析式为y=2x,
∵A点是抛物线与x轴的一个交点,可求得A点的坐标为(10,0),
设P点的坐标为(a,0),
则E点的坐标为(a,2a),
根据题意作等腰直角三角形PCD,
如图1,可求得点C的坐标为(3a,2a),
由C点在抛物线上,
得:2a=-´(3a)2+´3a,
即a2-a=0,
解得a1=,a2=0(舍去),
∴OP=.
依题意作等腰直角三角形QMN,设直线AB的解析式为y=k2x+b,
由点A(10,0),点B(2,4),求得直线AB的解析式为y=-x+5,
当P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,有以下三种情况:
第一种情况:CD与NQ在同一条直线上.
如图2所示.可证△DPQ为等腰直角三角形.此时OP、DP、AQ的长可依次表示为t、4t、2t个单位.
∴PQ=DP=4t,
∴t+4t+2t=10,
∴t=.
第二种情况:PC与MN在同一条直线上.如图3所示.可证△PQM为等腰直角三
角形.此时OP、AQ的长可依次表示为t、2t个单位.
∴OQ=10-2t,
∵F点在直线AB上,
∴FQ=t,
∴MQ=2t,
∴PQ=MQ=CQ=2t,
∴t+2t+2t=10,
∴t=2.
第三种情况:点P、Q重合时,PD、QM在同一条直线上,如图4所示.此时OP、
AQ的长可依次表示为t、2t个单位.
∴t+2t=10,
∴t=.
综上,符合题意的t值分别为,2,
看了 在平面直角坐标系xOy中,抛...的网友还看了以下:
已知:如图,直角三角形中AOB中,∠AOB=90°,OA=3cm以O为原点、OB为X轴建立平面直角 2020-04-26 …
题目在四边形ABCD中,AB向量=a向量,BC向量=b向量,CD向量=c向量,DA向量=d向量,且 2020-05-14 …
已知;如图,RT△AOB中,∠AOB=90°,OA=3CM,OB=3根号3CM.以O为原点、OB为 2020-05-16 …
有一质点由A向B运动,A、B间距离为L,已知质点在A的速度为V0,加速度为a,如果将有一质点由A向 2020-05-17 …
a=(v-u)/(t)我知道速度v是在t这个时间点上,我想问的就是,速度u是在哪个时间点上a=(v 2020-07-22 …
如图8-1-9所示,三个完全相同的金属小球a、b、c位于等边三角形的三个顶点上.a和c带正电,b带 2020-07-23 …
(b向量点乘c向量)乘a向量-(c向量点乘a向量)乘b向量与c向量垂直是真命题么 2020-08-01 …
有一个质点由A向B作直线运动,A,B间的距离为L,已知质点在A点的速度为Vo,加速度为a,如果将L 2020-08-02 …
有一质点由A向B作直线运动,A,B间的距离为L,已知质点在A点的速度为V0,加速度为a.如果将L分 2020-08-02 …
读长江口分流沙洲洲头年平均5m等深线变化图,完成5〜7题。5.图中2007年夏季5米等深线所处位罝相 2020-11-04 …