早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A,B两点,其中点A的坐标为(-3,0),点C为抛物线与y轴的交点.(1)求点B的坐标;(2)求此抛物线的解析式;(3)若点P在抛物线上,

题目详情
如图,对称轴为直线x=-1的抛物线y=x2+bx+c与x轴相交于A,B两点,其中点A的坐标为(-3,0),点C为抛物线与y轴的交点.
作业帮
(1)求点B的坐标;
(2)求此抛物线的解析式;
(3)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;
(4)设点Q为线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.
▼优质解答
答案和解析

(1)∵对称轴为直线x=-1的抛物线y=x2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0),
∴点B的坐标为(1,0);
(2)∵抛物线y=x2+bx+c的对称轴为直线x=-1,
∴-
b
2
=-1,解得b=2.
将B(1,0)代入y=x2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x2+2x-3;
(3)由(2)可知C(0,-3),
∴OC=3,
设P点坐标为(x,x2+2x-3),作业帮
∵S△POC=4S△BOC
1
2
×3×|x|=4×
1
2
×3×1,
∴|x|=4,x=±4.
当x=4时,x2+2x-3=16+8-3=21;
当x=-4时,x2+2x-3=16-8-3=5.
∴点P的坐标为(4,21)或(-4,5);
(4)设直线AC的解析式为y=kx+t   (k≠0)将A(-3,0),C(0,-3)代入,
-3k+t=0
t=-3
,解得
k=-1
t=-3

∴直线AC的解析式为y=-x-3.
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x2+2x-3),
QD=(-x-3)-(x2+2x-3)=-x2-3x=-(x+
3
2
2+
9
4

∴当x=-
3
2
时,QD有最大值
9
4