早教吧作业答案频道 -->数学-->
已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.求证:AB=2DE.
题目详情
已知AD⊥BC,BE=CE,∠ABC=2∠C,BF为∠B的平分线.
求证:AB=2DE.
求证:AB=2DE.
▼优质解答
答案和解析
证明:连接EF.
∵∠ABC=2∠C,BF为∠B的平分线,
∴∠FBC=∠C=
∠ABC,
∴BF=CF(等角对等边);
又∵BE=CE(已知),
∴EF⊥BC;
∵AD⊥BC,
∴EF∥AD,
∴AF:FC=DE:EC(平行线分线段成比例);
而AB:BC=AF:FC(角平分线的性质),
∴AB:BC=DE:EC(等量代换),
∴AB=2EC•
=2DE,即AB=2DE.
∵∠ABC=2∠C,BF为∠B的平分线,
∴∠FBC=∠C=
1 |
2 |
∴BF=CF(等角对等边);
又∵BE=CE(已知),
∴EF⊥BC;
∵AD⊥BC,
∴EF∥AD,
∴AF:FC=DE:EC(平行线分线段成比例);
而AB:BC=AF:FC(角平分线的性质),
∴AB:BC=DE:EC(等量代换),
∴AB=2EC•
DE |
EC |
看了 已知AD⊥BC,BE=CE,...的网友还看了以下:
对于任意正数a,b有f(ab)=f(a)+f(b),且f(1)的导数=1 证明f(x) 在零到正无 2020-05-13 …
已知K(xa-x2)^2≤(x1-x2)(f(x1)-f(x2))和∣f(x1)-f(x2)∣≤∣ 2020-05-17 …
设函数f:N→N,f(n)=n+1,下列表述正确的是()A:f存在反函数B:f是双射的C:f是满射 2020-05-17 …
f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2]的奇偶性已知函数f(x)对于任意实 2020-08-01 …
若函数f(x)不等于0,且f(x)满足下列三个条件:1.对任意实数a、b,均有f(a-b)=f(a 2020-08-03 …
下列对应是否是从A到B的函数?①A=R,B={xIx>0},f:x→绝对值x②A=Z,B=N,f: 2020-08-03 …
已知f(x)=(1/2)x,a,b∈R+,A=f(A+B)/2,G=f根号ab...则AGH的大小关 2020-11-03 …
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)*f(b)成立,且当x<0时,f(x)> 2020-12-07 …
已知f(x)在R上是增函已知f(x)在R上是增函数,a,b∈R,且a+b≤0,则有[]A、f(a)+ 2020-12-08 …
已知f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)).(Ⅰ)若a=b=1, 2020-12-22 …