早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=12x(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(1)求证:线段AB为⊙P的直径;(2)求△AOB的

题目详情
如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=
12
x
(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.

(1)求证:线段AB为⊙P的直径;
(2)求△AOB的面积;
(3)如图2,Q是反比例函数y=
12
x
(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D.求证:DO•OC=BO•OA.
▼优质解答
答案和解析
(1)证明:∵∠AOB=90°,且∠AOB是⊙P中弦AB所对的圆周角,
∴AB是⊙P的直径.
(2)设点P坐标为(m,n)(m>0,n>0),
∵点P是反比例函数y=
12
x
(x>0)图象上一点,∴mn=12.
如答图,过点P作PM⊥x轴于点M,PN⊥y轴于点N,则OM=m,ON=n.
由垂径定理可知,点M为OA中点,点N为OB中点,
∴OA=2OM=2m,OB=2ON=2n,
∴S△AOB=
1
2
BO•OA=
1
2
×2n×2m=2mn=2×12=24.
(3)证明:∵以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D,∠COD=90°,
∴DC是⊙Q的直径.
若点Q为反比例函数y=
12
x
(x>0)图象上异于点P的另一点,
参照(2),同理可得:S△COD=
1
2
DO•CO=24,
则有:S△COD=S△AOB=24,即
1
2
BO•OA=
1
2
DO•CO,
∴DO•OC=BO•OA.
看了 如图1,在平面直角坐标系中,...的网友还看了以下: