早教吧作业答案频道 -->其他-->
已知函数f(x)=ax,g(x)=lnx,其中a∈R.(I)若函数F(x)=f(x)-g(x)有极值1,求a的值;(II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;(Ⅲ)证明
题目详情
已知函数f(x)=ax,g(x)=lnx,其中a∈R.
( I)若函数F(x)=f(x)-g(x)有极值1,求a的值;
( II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;
(Ⅲ)证明:
sin
<ln2..
( I)若函数F(x)=f(x)-g(x)有极值1,求a的值;
( II)若函数G(x)=f[sin(1-x)]+g(x)在区间(0,1)上为增函数,求a的取值范围;
(Ⅲ)证明:
n |
k=1 |
1 |
(k+1)2 |
▼优质解答
答案和解析
( I)∵函数f(x)=ax,g(x)=lnx,其中a∈R.
∴F(x)=ax-lnx,则 F′(x)=a-
,
∵函数F(x)=f(x)-g(x)有极值1,
∴F′(1)=0,
∴a-1=0,解得a=1;
( II)∵函数G(x)=f[sin(1-x)]+g(x)=asin(1-x)+lnx,
∴G′(x)=acos(1-x)×(-1)+
,
只要G′(x)>0在区间(0,1)上大于0,
∴G′(x)=acos(1-x)×(-1)+
>0,
∴a<
,求
的最小值即可,
求h(x)=xcos(1-x)的最小值即可,0<1-x<1,
∵h′(x)=cos(1-x)+xsin(1-x)>0,
∴h(x)在(0,1)增函数,
h(x)<h(1)=1,
∴
的最小值为1,
∴a≤1;
(Ⅲ)∵0<
<1,
∵sinx<x在x∈(0,1)上恒成立,
∴
sin
=sin
+sin
+…+sin
≤
+
+…+
<
+
+
+
+
+…+
=
-
<
<ln2,
∴
sin
<ln2;
∴F(x)=ax-lnx,则 F′(x)=a-
1 |
x |
∵函数F(x)=f(x)-g(x)有极值1,
∴F′(1)=0,
∴a-1=0,解得a=1;
( II)∵函数G(x)=f[sin(1-x)]+g(x)=asin(1-x)+lnx,
∴G′(x)=acos(1-x)×(-1)+
1 |
x |
只要G′(x)>0在区间(0,1)上大于0,
∴G′(x)=acos(1-x)×(-1)+
1 |
x |
∴a<
1 |
xcos(1−x) |
1 |
xcos(1−x) |
求h(x)=xcos(1-x)的最小值即可,0<1-x<1,
∵h′(x)=cos(1-x)+xsin(1-x)>0,
∴h(x)在(0,1)增函数,
h(x)<h(1)=1,
∴
1 |
xcos(1−x) |
∴a≤1;
(Ⅲ)∵0<
1 |
(k+1)2 |
∵sinx<x在x∈(0,1)上恒成立,
∴
n |
k=1 |
1 |
(k+1)2 |
1 |
22 |
1 |
23 |
1 |
(n+1)2 |
1 |
22 |
1 |
23 |
1 |
(n+1)2 |
<
1 |
4 |
1 |
9 |
1 |
16 |
1 |
4×5 |
1 |
5×6 |
1 |
n(n+1) |
97 |
144 |
1 |
n+1 |
97 |
144 |
∴
n |
k=1 |
1 |
(k+1)2 |
看了 已知函数f(x)=ax,g(...的网友还看了以下:
已知集合A={x|x²+4x=0},B={x|x²+2(a+1)-1=0,a∈R},如果B⊆A,求 2020-04-05 …
已知A={x/x²-2x+a>0}且1∉A则实数a的取值范围知道一种方法是将x=1带入算,但是这道 2020-04-06 …
已知p:-2≤x≤10,q=(x-a)(x-a-1)>0,若p是q成立的充分不必要条件,则a的取值 2020-05-13 …
已知集合P={a,a+d,a+2d},Q={a,aq,aq^2},其中a≠0,且P=Q,求q的值. 2020-05-17 …
已知关于x的二次方程x^2-2(a+1)x+a-1=0已知关于x的二次方程x^2-2(a+1)x+ 2020-05-23 …
26.12已知方程x∧2+(2+a)x+1+a+b=0的两根为x1,x2,且0<x1<1<x2,b 2020-07-15 …
已知函数f(x)=1/a-1/x(a>0,x>0).(1)若f(x)在区间[m,n]上的值域是[m 2020-07-20 …
已知xyz三维坐标系上点A(0,0,1),B(1,1,0),C(0,1,0),O(0,0,0),已 2020-07-30 …
已知勾函数……求实数t的取值范围.已知勾函数y=x+a∧2/x(a>0)在(-∞,-a)和(a,+∞ 2020-11-08 …
已知,若关于的方程x^2+x+|a-1/4|+|a|=0有实根,则a的取值范围是已知,若关于的方程x 2020-12-05 …