早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,平面直角坐标系中,已知A(-2,0),B(2,0),C(6,0),D为y轴正半轴上一点,且∠ODB=30°,延长DB至E,使BE=BD.P为x轴正半轴上一动点(P在C点右边),M在EP上,且∠EMA=60°,AM交BE

题目详情
如图,平面直角坐标系中,已知A(-2,0),B(2,0),C(6,0),D为y轴正半轴上一点,且∠ODB=30°,延长DB至E,使BE=BD.P为x轴正半轴上一动点(P在C点右边),M在EP上,且∠EMA=60°,AM交BE于N.
(1)求证:BE=BC;
(2)求证:∠ANB=∠EPC;
(3)当P点运动时,求BP-BN的值.
▼优质解答
答案和解析
(1)证明:∵A(-2,0),B(2,0),
∴AD=BD,AB=4,
∵∠ODB=30°,
∴∠ABD=90°-30°=60°,
∴△ABD是等边三角形,
∴BD=AB=4,
∵B(2,0),C(6,0),
∴BC=6-2=4,
∴BC=BD,
又∵BE=BD,
∴BE=BC;

(2)证明:由三角形的外角性质得,∠BAN+∠ANB=∠ABD=60°,
∠BAN+∠EPC=∠EMA=60°,
所以,∠ANB=∠EPC;

(3)∵BE=BD=BC,∠CBE=∠ABD=60°,
∴△BCE是等边三角形,
∴BC=CE,
∵AB=BC=4,
∴AB=CE,
∵∠ABC=∠BCE=60°,
∴∠ABN=∠ECP=120°,
在△ABN和△ECP中,
∠ANB=∠EPC
∠ABN=∠ECP
AB=CE

∴△ABN≌△ECP(AAS),
∴BN=CP,
∵BP-CP=BC,
∴BP-BN=BC=4,
故BP-BN的值为4,与点P的位置无关.