早教吧作业答案频道 -->其他-->
(2008•西城区一模)如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.(1)求证:PA=PC.(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD的面积.
题目详情
(2008•西城区一模)如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD的面积.
(1)求证:PA=PC.
(2)若AD=12,AB=15,∠DAB=60°,求四边形ABCD的面积.
▼优质解答
答案和解析
(1)证明:在PA和PC的延长线上分别取点M、N,使AM=AE,CN=CF.
∵AP+AE=CP+CF,
∴PN=PM.
∵PE=PF,
∴四边形EMFN是平行四边形.
∴ME=FN,∠EMA=∠CNF.
又∵∠AME=∠AEM,∠CNF=∠CFN,
∴△EAM≌△FCN.
∴AM=CN.
∵PM=PN,
∴PA=PC.
(2)∵PA=PC,EP=PF,
∴四边形AFCE为平行四边形.
∴AE∥CF.
∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,
∴△PED≌△PFB.
∴DP=PB.
由(1)知PA=PC,
∴四边形ABCD为平行四边形.
∵AB=15,AD=12,∠DAB=60°,
∴四边形ABCD的面积为90
.
∵AP+AE=CP+CF,
∴PN=PM.
∵PE=PF,
∴四边形EMFN是平行四边形.
∴ME=FN,∠EMA=∠CNF.
又∵∠AME=∠AEM,∠CNF=∠CFN,
∴△EAM≌△FCN.
∴AM=CN.
∵PM=PN,
∴PA=PC.
(2)∵PA=PC,EP=PF,
∴四边形AFCE为平行四边形.
∴AE∥CF.
∵∠PED=∠PFB,∠EPD=∠FPB,EP=PF,
∴△PED≌△PFB.
∴DP=PB.
由(1)知PA=PC,
∴四边形ABCD为平行四边形.
∵AB=15,AD=12,∠DAB=60°,
∴四边形ABCD的面积为90
3 |
看了 (2008•西城区一模)如图...的网友还看了以下:
直线y=-3/1x+6与x轴交于A点,与y轴交于B点,求AB两点坐标,P在x轴上若三角形PAB是直 2020-05-13 …
已知椭圆C的方程为x^2/4y^2=1,A,B是四条直线x=±2,y=±1所围成的矩形的两个顶点( 2020-05-15 …
如图,在平面直角坐标系xOy中,点P位抛物线y=x2上一动点,点A的坐标为(1,0).(1)若点P 2020-05-16 …
如图所示,半径为2的⊙P的圆心在直线y=2x-1上运动.(1)当圆P和X轴相切时,求点P坐标;(2 2020-05-16 …
平面内,若点P与A、B两点构成等腰三角形,我们称点P是A、B两点的“巧妙点”.类似地,平面内,若点 2020-05-16 …
请问pínpín点头的pínpín怎么写啊? 2020-06-07 …
圆锥曲线若直线y=x-b与抛物线y2=2px(p>0)相交于不同两点A(x1,y1),B(x2,y 2020-06-12 …
PA,PC分别切圆O于A,C两点,B为圆O上与A,C不重合的点,若角P=50度,则角ABC=度. 2020-06-15 …
A(3,0)椭圆x2/6+y2/2=1,过A的直线与椭圆交于P,Q两点,若以P,Q为直径的圆过(0 2020-06-23 …
数轴上两点A,B对应的书分别为-1,4,点p为数轴上一动点,其对应的数为x若点p到点a,点b的距离 2020-06-26 …