早教吧作业答案频道 -->数学-->
两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.
题目详情
两个全等的含30°,60°角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连接BD,取BD的中点M,连接ME,MC.试判断△EMC的形状,并说明理由.
▼优质解答
答案和解析
△EMC是等腰直角三角形.理由如下:
连接MA.
∵∠EAD=30°,∠BAC=60°,
∴∠DAB=90°,
∵△EDA≌△CAB,
∴DA=AB,ED=AC,
∴△DAB是等腰直角三角形.
又∵M为BD的中点,
∴∠MDA=∠MBA=45°,AM⊥BD(三线合一),
AM=
BD=MD,(直角三角形斜边上的中线等于斜边的一半)
∴∠EDM=∠MAC=105°,
在△MDE和△CAM中,
ED=AC,∠MDE=∠CAM,MD=AM
∴△MDE≌△MAC.
∴∠DME=∠AMC,ME=MC,
又∵∠DMA=90°,
∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.
∴△MEC是等腰直角三角形.
连接MA.
∵∠EAD=30°,∠BAC=60°,
∴∠DAB=90°,
∵△EDA≌△CAB,
∴DA=AB,ED=AC,
∴△DAB是等腰直角三角形.
又∵M为BD的中点,
∴∠MDA=∠MBA=45°,AM⊥BD(三线合一),
AM=
1 |
2 |
∴∠EDM=∠MAC=105°,
在△MDE和△CAM中,
ED=AC,∠MDE=∠CAM,MD=AM
∴△MDE≌△MAC.
∴∠DME=∠AMC,ME=MC,
又∵∠DMA=90°,
∴∠EMC=∠EMA+∠AMC=∠EMA+∠DME=∠DMA=90°.
∴△MEC是等腰直角三角形.
看了 两个全等的含30°,60°角...的网友还看了以下:
(1)第一张图片是一个五角形ABCDE,你能计算出角A+角B+角C+角D+角E(2)从左往右数第二 2020-04-26 …
在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为12.过F1的直线交 2020-06-21 …
在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点.使四边形PQ 2020-07-19 …
设抛物线C:y2=2px(p>0)的焦点为F,准线为l,M∈C,以M为圆心的圆M与l,相切于点Q, 2020-07-26 …
设角B角C的角平分线为y=1和x+y+1=0,设顶点A(-1,1),求直线BC的方程在三角形ABC 2020-07-30 …
已知角1是锐角,角2是钝角,角3是直角,请问角1,角2,角3的大小关系是().A角1>角2>角3, 2020-07-30 …
1:如图直线AB,CD相交于点O,EO垂直于AB,O点为垂点,OF平角AOC且角EOC=2/5角A 2020-07-30 …
如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强 2020-07-31 …
初三下册数学锐角三角函数的一道题,求详解已知a为锐角,m=sina+cosa,则m的取值范围.其实这 2020-12-08 …
1,已知RT三角形ABC中,角C=90度,AC=BC,AD是角BAC的平分线,求证AC+CD=AB2 2020-12-25 …