早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PM∥OB交ON于点M,MD⊥OB于点D,QR∥OB交MD于点R,连接PR交QM于点S.(1)求证:四边形PQRM为矩形;(2)若OP=12PR,试探究∠AOB

题目详情
如图,ON为∠AOB中的一条射线,点P在边OA上,PH⊥OB于H,交ON于点Q,PM∥OB交ON于点M,MD⊥OB于点D,QR∥OB交MD于点R,连接PR交QM于点S.

(1)求证:四边形PQRM为矩形;
(2)若OP=
1
2
PR,试探究∠AOB与∠BON的数量关系,并说明理由.
▼优质解答
答案和解析
(1)证明:∵PH⊥OB,MD⊥OB,
∴PH∥MD,
∵PM∥OB,QR∥OB,
∴PM∥QR,
∴四边形PQRM是平行四边形,
∵PH⊥OB,
∴∠PHO=90°,
∵PM∥OB,
∴∠MPQ=∠PHO=90°,
∴四边形PQRM为矩形;
(2)∠AOB=3∠BON.理由如下:
∵四边形PQRM为矩形,
∴PS=SR=SQ=
1
2
PR,
∴∠SQR=∠SRQ,
又∵OP=
1
2
PR,
∴OP=PS,
∴∠POS=∠PSO,
∵QR∥OB,
∴∠SQR=∠BON,
在△SQR中,∠PSO=∠SQR+∠SRQ=2∠SQR=2∠BON,
∴∠POS=2∠BON,
∴∠AOB=∠POS+∠BON=2∠BON+∠BON=3∠BON,
即∠AOB=3∠BON.