早教吧作业答案频道 -->数学-->
求和:3/1×2×4+5/2×3×5+7/3×4×6+.+(2n+1)/n(n+1)(n+3)
题目详情
求和:3/1×2×4+5/2×3×5+7/3×4×6+.+(2n+1)/n(n+1)(n+3)
▼优质解答
答案和解析
因为2N+1=N+(N+1),
所以(2N+1)/N(N+1)(N+3)=[N+(N+1)]/N(N+1)(N+3)=1/(N+1)(N+3) + 1/N(N+3)
=1/2 *[1/(N+1) - 1/(N+3) ] + 1/3 *[1/N - 1/(N+3)]
故原式可化为:
1/2 (1/2 -1/4)+1/3(1-1/4) +1/2(1/3-1/5)+1/3(1/2-1/5)+1/2(1/4-1/6)+1/3(1/3-1/6)+…………
=1/2(1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……)+1/3(1-1/4+1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……)
=1/2[1/2+1/3-1/(N+2)-1/(N+3)]+1/3[1+1/2+1/3-1/(N+1)-1/(N+2)-1/(N+3)]
=37/36-1/(3N+3)-5/(6N+12)-5/(6N+18)
所以(2N+1)/N(N+1)(N+3)=[N+(N+1)]/N(N+1)(N+3)=1/(N+1)(N+3) + 1/N(N+3)
=1/2 *[1/(N+1) - 1/(N+3) ] + 1/3 *[1/N - 1/(N+3)]
故原式可化为:
1/2 (1/2 -1/4)+1/3(1-1/4) +1/2(1/3-1/5)+1/3(1/2-1/5)+1/2(1/4-1/6)+1/3(1/3-1/6)+…………
=1/2(1/2-1/4+1/3-1/5+1/4-1/6+1/5-1/7+……)+1/3(1-1/4+1/2-1/5+1/3-1/6+1/4-1/7+1/5-1/8+……)
=1/2[1/2+1/3-1/(N+2)-1/(N+3)]+1/3[1+1/2+1/3-1/(N+1)-1/(N+2)-1/(N+3)]
=37/36-1/(3N+3)-5/(6N+12)-5/(6N+18)
看了 求和:3/1×2×4+5/2...的网友还看了以下:
S=0^2×1/N+(1/N)^2×1/N+(2/N)^2×1/N+…+(N—1/N)^2×1/N 2020-05-13 …
求助:证明对任意素数p,存在正整数前n项和Sn及前m项和Sm(n,m为正整数),p=Sn/Sm证明 2020-05-17 …
填空题6.若根号(m-3)+(n+1)^2=0,则m+n的值为().(注:(m-3)+(n+1)^ 2020-05-17 …
近代化学基础急一1.在用量子数表示核外电子运动状态时,写出下列各组中所缺少的量子数.(1)n=3, 2020-06-04 …
a1=1,an=2(an-1+an-2+...+a2+a1)(n>=2,n∈N*),这个数列的通项 2020-07-09 …
常见数列和的推证(1):1^2+2^2+3^2+.+n^2=n(n+1)(2n+1)÷63)(2) 2020-07-13 …
N个一样的球,放到M个有编号的箱子里,有多少种放法?举例N=3,M=2,有4种方法:3,0,;2, 2020-07-14 …
数列的极限计算:lim[(7n+4)/(5-3n)]=n→∞lim[(2n^2+n-3)/(3n^ 2020-07-22 …
问一个关于平方和公式推导过程中的小问题利用(n+1)^3=n^3+3n^2+3n+1推导时,(n+ 2020-07-31 …
分解因式谁能给我讲解下!a^n+b^n=(a+b)([a^{n-1}]-[a^{n-2}]*b+[a 2020-11-20 …