早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.(1)

题目详情
对定义在区间D上的函数f(x),若存在闭区间[a,b]⊆D和常数C,使得对任意的x∈[a,b]都有f(x)=C,且对任意的x∉[a,b]都有f(x)>C恒成立,则称函数f(x)为区间D上的“U型”函数.
(1)求证函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)设函数f(x)是(1)中的“U型”函数,若不等式|t-1|+|t-2|≤f(x)对一切t∈R恒成立,求实数t的取值范围.
(3)若函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“U型”函数,求实数m和n的值.
▼优质解答
答案和解析
(1)当x∈[1,3]时,f(x)=x-1+3-x=2,
当x∉[1,3]时,f(x)=|x-1|+|x-3|>|x-1+3-x|=2,
故存在闭区间[a,b]=[1,3]⊆R和常数C=2符合条件,
所以函数f(x)=|x-1|+|x-3|是R上的“U型”函数;
(2)因为不等式|t-1|+|t-2|≤f(x)对一切x∈R恒成立,
所以|t-1|+|t-2|≤f(x)min
由(1)可知f(x)min=(|x-1|+|x-3|)min=2,
所以|t-1|+|t-2|≤2,
解得:
1
2
≤t≤
5
2

(3)由“U型”函数定义知,存在闭区间[a,b]⊆[-2,+∞)和常数c,使得对任意的x∈[a,b],
都有g(x)=mx+
x2+2x+n
=c,即
x2+2x+n
=c-mx,
所以x2+2x+n=(c-mx)2恒成立,即x2+2x+n=m2x2-2cmx+c2对任意的x∈[a,b]成立,
所以
m2=1
−2cm=2
c2=n
,所以
m=1
c=−1
n=1
作业帮用户 2017-10-09
问题解析
1)对于函数f(x)=|x-1|+|x-3|,欲判断其是否是“U型”函数,只须f1(x)≥2是否恒成立,利用去绝对值符号后即可证得;
(2)不等式|t-1|+|t-2|≤f(x)对一切x∈R恒成立,等价于|t-1|+|t-2|≤f(x)min,等价于|t-1|+|t-2|≤2,从而可求实数t的取值范围;
(3)函数g(x)=mx+
x2+2x+n
是区间[-2,+∞)上的“U型”函数,等价于x2+2x+n=m2x2-2cmx+c2对任意的x∈[a,b]成立,利用恒等关系,可得到关于m,n,c的方程,解出它们的值,最后通过验证g(x)是区间[-2,+∞)上的“U型”函数即可解决问题.
名师点评
本题考点:
函数恒成立问题.
考点点评:
本题考查新定义,考查函数恒成立问题,考查函数的最值,解题的关键是利用恒成立结论等式,从而可得参数的值,属于难题.
我是二维码 扫描下载二维码