早教吧作业答案频道 -->数学-->
已知a,b,c∈(0,1),求证(1-a)b,(1-b)c,(1-c)a不可能都大于1/4要详细的解答啊
题目详情
已知a,b,c∈(0,1),求证(1-a)b,(1-b)c,(1-c)a不可能都大于1/4
要详细的解答啊
要详细的解答啊
▼优质解答
答案和解析
证明:用反证法来证明
假设(1-a)b,(1-b)c,(1-c)a都大于1/4,
由于a,b,c∈(0,1),
所以
√[(1-a)b]>1/2,
√[(1-b)c]>1/2,
√[(1-c)a]>1/2,
即√[(1-a)b]+√[(1-b)c]+√[(1-c)a]>3/2············①
又因为
√[(1-a)b]≤(1-a+b)/2,·············②
√[(1-b)c]≤(1-b+c)/2,
√[(1-c)a]≤(1-c+a)/2,
所以√[(1-a)b]+√[(1-b)c]+√[(1-c)a]≤3/2,
这与①式:√((1-a)b)+√((1-b)c)+√((1-c)a)>3/2矛盾.
所以假设不成立,
故(1-a)b,(1-b)c,(1-c)a中至少有一个不大于1/4.
注:本题用到了以下的基本不等式:
由于(√a-√b)^2≥0,展开得:a+b≥2√ab,即:√ab≤(a+b)/2.
②式利用了该基本不等式
假设(1-a)b,(1-b)c,(1-c)a都大于1/4,
由于a,b,c∈(0,1),
所以
√[(1-a)b]>1/2,
√[(1-b)c]>1/2,
√[(1-c)a]>1/2,
即√[(1-a)b]+√[(1-b)c]+√[(1-c)a]>3/2············①
又因为
√[(1-a)b]≤(1-a+b)/2,·············②
√[(1-b)c]≤(1-b+c)/2,
√[(1-c)a]≤(1-c+a)/2,
所以√[(1-a)b]+√[(1-b)c]+√[(1-c)a]≤3/2,
这与①式:√((1-a)b)+√((1-b)c)+√((1-c)a)>3/2矛盾.
所以假设不成立,
故(1-a)b,(1-b)c,(1-c)a中至少有一个不大于1/4.
注:本题用到了以下的基本不等式:
由于(√a-√b)^2≥0,展开得:a+b≥2√ab,即:√ab≤(a+b)/2.
②式利用了该基本不等式
看了 已知a,b,c∈(0,1),...的网友还看了以下:
已知△ABC的三个顶点A(-1,0),B(1,0),C(3,2),其外接圆为圆H(2)对于线段BH 2020-04-27 …
已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴的正半轴上,若点A(-1,0)和点B(0,8 2020-05-13 …
如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a,b,c满足关系 2020-05-16 …
已知向量m=(a,b),n=(c,d),p=(x,y),定义新运算m*n=(ac+bd,ad+bc 2020-05-16 …
1.m-2的相反数是6,那么m的值是( ).A.4 B.-4 C.8 D.-82.已知|m+3|+ 2020-05-16 …
已知定义在R上的函数f(x),满足f(-x)+f(x)=0,x1,x2,x3,属于R,且x1+x2 2020-06-06 …
已知圆C与圆x2+y2-7y+10=0相交,所得公共弦平行于已知直线2x-3y-1=0,又圆C经过 2020-06-12 …
已经很多年没有接触过了,已知直线I过原点,抛物线C的顶点在原点,焦点在x轴的正半轴上,若A(-1, 2020-06-27 …
已知圆C与两坐标轴都相切,圆心C到直线y=-x的距离等于根号21、求圆C的方程2、若直线l与x轴正 2020-07-31 …
六年级填空题1.生活中我们一般用摄氏度(°C)表示温度,在欧美一些国家则用华氏度(F°)表示温度,已 2020-12-18 …