早教吧作业答案频道 -->数学-->
已知sin(a+b)=1,求证:tan(2a+b)+tanb=0
题目详情
已知sin(a+b)=1,求证:tan(2a+b)+tanb=0
▼优质解答
答案和解析
tan(2a+b)+tanb
=[sin(2a+b)/cos(2a+b)]+[sinb/cosb]
=[sin(2a+b)cosb+cos(2a+b)sinb]/[cos(2a+b)cosb]
=[sin(2a+2b)]/[cos(2a+b)cosb]
因为sin(a+b)=1,则cos²(a+b)+sin²(a+b)=1,得:cos(a+b)=0
则原式=[2sin(a+b)cos(a+b)]/[cos(2a+b)cosb]=0,即:
tan(2a+b)+tanb=0
=[sin(2a+b)/cos(2a+b)]+[sinb/cosb]
=[sin(2a+b)cosb+cos(2a+b)sinb]/[cos(2a+b)cosb]
=[sin(2a+2b)]/[cos(2a+b)cosb]
因为sin(a+b)=1,则cos²(a+b)+sin²(a+b)=1,得:cos(a+b)=0
则原式=[2sin(a+b)cos(a+b)]/[cos(2a+b)cosb]=0,即:
tan(2a+b)+tanb=0
看了 已知sin(a+b)=1,求...的网友还看了以下:
已知a+b+c=0,求证a³+b³+c³=3abc过程解释已知a+b+c=0,求证a³+b³+c³ 2020-06-12 …
数学厉害的进来1求证a²+3b²≥2b(a+b)2,求证a²+b²+2≥2a+2b3,已知a≠2, 2020-07-09 …
(1)已知x,y,z∈R,且x+y+z=8,x2+y2+z2=24,求证:43≤x≤4,43≤y≤ 2020-07-13 …
1.已知a,b,c∈R.a+b+c=1a²+b²+c²=1/2求证c≥02(1)已知a,c是正实数 2020-07-14 …
如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F=180°.请你认真完成下面的填空.证明 2020-07-22 …
高二数学题,帮忙解决,要步骤的(1)设a,b,c属于R,a+b+c=0,abc0.(2)设a,b, 2020-07-22 …
已知△abc中,ab=ac,求证:∠b>90°(利用反证法求证)已知△abc中,ab=ac,求证: 2020-08-01 …
证明不等式:(1)设a>0,b>0,求证:a5+b5≥a3b2+a2b3(2)已知a≥1,求证:a+ 2020-10-31 …
证明填空:如图,已知直线b∥c,a⊥b求证:a⊥c证明:∵a⊥b(已知)∴∠1=90°()又b∥c( 2020-11-02 …
高一数学题3已知a、b、为非零向量,求证a⊥b|a+b|=|a-b|.4已知a+b=c,a-b=c, 2020-11-02 …