早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设随机变量X的概率密度为f(x)=ax,0≤x<2cx+b,2≤x≤40,其它,已知E(X)=2,P(1<X<3)=34,求:(1)a,b,c的值;(2)P(X>1).

题目详情
设随机变量X的概率密度为f(x)=
ax ,0≤x<2
cx+b ,2≤x≤4
0 ,其它
,已知E(X)=2,P(1<X<3)=
3
4
,求:
(1)a,b,c的值;  
(2)P(X>1).
▼优质解答
答案和解析

(1)由题意得:E(X)=
+∝
−∝
xf(x)dx=
2
0
xaxdx+
4
2
x(cx+b)dx=
8a
3
+
56c
3
+6b=2
P(1<X<3)=
2
0
axdx+
3
2
(cx+b)dx=
3
4

+∝
−∝
f(x)dx=
2
2
axdx+
4
2
(cx+b)dx=1
解得:
a=
1
3
b=
−1
3
c=
1
6

(2)P(X>1)=1-P(X≤1)=1−
1
0
axdx=1−
1
6
5
6