早教吧作业答案频道 -->数学-->
这样的二元函数可积吗?有这样一个函数:f(x,y)=[sin(x-y)]/(x-y)显然它在直线x=y上无定义,那它是不是处处可积呢?就是说,如果积分区域包含直线x=y怎么办?我的想法是:一元函数中,有限个可去间
题目详情
这样的二元函数可积吗?
有这样一个函数:f(x,y)=[sin(x-y)]/(x-y)
显然它在直线x=y上无定义,那它是不是处处可积呢?就是说,如果积分区域包含直线x=y怎么办?
我的想法是:一元函数中,有限个可去间断点不影响函数的可积,比如f(x)=(sin x)/x是可积的.那么推广到二元函数,“间断点”变成“线”,一元积分的面积变成了二元积分的体积,结论还成立吗?
希望回答者负责,混分的别来,
有这样一个函数:f(x,y)=[sin(x-y)]/(x-y)
显然它在直线x=y上无定义,那它是不是处处可积呢?就是说,如果积分区域包含直线x=y怎么办?
我的想法是:一元函数中,有限个可去间断点不影响函数的可积,比如f(x)=(sin x)/x是可积的.那么推广到二元函数,“间断点”变成“线”,一元积分的面积变成了二元积分的体积,结论还成立吗?
希望回答者负责,混分的别来,
▼优质解答
答案和解析
如果准确些讲,只有在不可积点集的测度为0的时候积分才可积,当然测度这个概念要到实变函数里才能学到,你可以简单地理解为不可集点集的长度(一维情况)、面积(二维情况)或者体积(三维)为0时才可积.而你举的例子中,y=x这条直线的面积显然是0,所以积分当然也是可积的.
如果还不明白,你可以研究一下课本里定积分以及重积分分划求和取极限的整个定义的过程,你会发现少量的不可积区域已经在取极限过程中作为高阶无穷小被忽略了,当然这些东西只需要数学专业的学生才需要掌握……
如果还不明白,你可以研究一下课本里定积分以及重积分分划求和取极限的整个定义的过程,你会发现少量的不可积区域已经在取极限过程中作为高阶无穷小被忽略了,当然这些东西只需要数学专业的学生才需要掌握……
看了 这样的二元函数可积吗?有这样...的网友还看了以下:
一个函数的导函数最后求出来为sin(1/x)原函数是连续的,为什么在x=0处导数存在但不连续?什么 2020-05-23 …
函数y=x^(1/3)在x=0处导数不存在,但是切线存在,那函数在此点可导么?可微么?函数y=x^ 2020-06-03 …
关于复合函数可导的问题f(u),在u=g(x0)处不可导,g(x)在x0处不可导,那么复合函数f( 2020-07-16 …
设函数f(x)和g(x)在点x0处不连续,而函数h(x)在点x0处连续,则函数()x0处必不连续选 2020-07-18 …
端点上上不连续也能用牛顿莱布尼茨公式牛顿莱布尼茨公式不是首先就要求被积函数要连续吗,那为什么函数在 2020-07-24 …
设函数f(x)和g(x)在点x0(x0中的0是下标)处不连续,而函数h(x)在点x0连续,则下列哪 2020-07-29 …
可以说函数的拐点一定不是极值点吗?也就是函数的拐点处原函数的单调性一定不发生变化?如果不可以,请帮 2020-07-31 …
设有命题①函数f(x),g(x)在区间I内无界,则f(x)g(x)在I内也无界;②函数f(x),g 2020-07-31 …
x^1/3怎么是连续函数?幂函数y=x^a(其中a为实常数)属于基本初等函数,是连续函数.但是函数 2020-08-01 …
不可导的充要条件证明若函数f(x)在x=a出可导,则函数|f(x)|在x=a处不可导的充分必要条件是 2020-11-03 …