早教吧作业答案频道 -->其他-->
在f(x)在[0,π]上连续,且满足∫π0min{x,y}f(y)dy=4f(x),求f(x).
题目详情
在f(x)在[0,π]上连续,且满足
min{x,y}f(y)dy=4f(x),求f(x).
∫ | π 0 |
▼优质解答
答案和解析
∵
min{x,y}f(y)dy=
yf(y)dy+x
f(y)dy=4f(x),
由上式知,f(x)在[0,π]上可导,
∴上式两边对x求导得
xf(x)−xf(x)+
f(y)dy=4f′(x)
即
f(y)dy=4f′(x)
∴f(x)在[0,π]上二阶可导
∴再对上式求导,得
-f(x)=4f″(x)
即:4f″(x)+f(x)=0
这是二阶常系数齐次线性微分方程,其特征方程为:4r2+1=0
解得特征根为:r1,2=±
i
∴f(x)=C1cos
+C2sin
…①
又在
min{x,y}f(y)dy=
yf(y)dy+x
f(y)dy=4f(x)中,令x=0,得f(0)=0
代入①得,C1=0
∴f(x)=Csin
,其中C为任意常数.
∫ | π 0 |
∫ | x 0 |
∫ | π x |
由上式知,f(x)在[0,π]上可导,
∴上式两边对x求导得
xf(x)−xf(x)+
∫ | π x |
即
∫ | π x |
∴f(x)在[0,π]上二阶可导
∴再对上式求导,得
-f(x)=4f″(x)
即:4f″(x)+f(x)=0
这是二阶常系数齐次线性微分方程,其特征方程为:4r2+1=0
解得特征根为:r1,2=±
1 |
2 |
∴f(x)=C1cos
x |
2 |
x |
2 |
又在
∫ | π 0 |
∫ | x 0 |
∫ | π x |
代入①得,C1=0
∴f(x)=Csin
x |
2 |
看了 在f(x)在[0,π]上连续...的网友还看了以下:
求函数在指定点处的导数值求函数在指定点处的导数值f(t)=(t+sint)分之(t-sint)在t 2020-05-22 …
求函数在指定点处的导数值f(t)=(t+sint)分之(t-sint)在x=2分之pai处的导数值 2020-05-22 …
求曲线x^2+y^2+z^2=6,x+y+z=0在点(1,-2,1)处的切线及平面方程,书上求出d 2020-06-26 …
常微分方程问题,例题不懂求(dy/dx)^3+2x*dy/dx-y=0的解解出y,并令dy/dx= 2020-06-28 …
1.已知曲线C:x^2+ycosx-y^2=0a.求dy/dxb.P(π/2,-π/2)为曲线C上 2020-06-30 …
如要求dx/dy|(-1,-8),请问其中的(-1,-8)是什么意思?是求f(x)在x=-1的导数 2020-07-21 …
一道关于一元函数导数的问题把y看作自变量,x为因变量,变换方程求证{(dy/dx)*[(dy)^3 2020-07-25 …
1.dy/dx=(xy^2-cosxsinx)/(y(1-x^2)),y(0)=2求y2.xydx+ 2020-10-31 …
2重积分中不是有那个求转动惯量的嘛...比如说Ix=∫∫y^2*f(x,y)d6=∫dx∫y^2f( 2020-10-31 …
我究竟错哪里了常微分方程求解dy/dx=2((y+2)/(x+y-1))^2我的解法如下两边求倒数2 2020-12-12 …