早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}与{bn}满足an+1-an=2(bn+1-bn),n∈N*.(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;(2)设a1=λ<0,bn=λn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且Mm∈(-2,2)

题目详情
已知数列{an}与{bn}满足an+1-an=2(bn+1-bn),n∈N*
(1)若bn=3n+5,且a1=1,求数列{an}的通项公式;
(2)设a1=λ<0,bnn(n∈N*),求λ的取值范围,使得{an}有最大值M与最小值m,且
M
m
∈(-2,2).
▼优质解答
答案和解析
(1)∵an+1-an=2(bn+1-bn),bn=3n+5,
∴an+1-an=2(bn+1-bn)=2(3n+8-3n-5)=6,
∴{an}是等差数列,首项为a1=1,公差为6,
则an=1+6(n-1)=6n-5;
(2)∵bnn,∴an+1-an=2(bn+1-bn)=2(λn+1n),
当n≥2时,an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(λnn-1)+2(λn-1n-2)+…+2(λ2-λ)+λ=2λn-λ.
当n=1时,a1=λ适合上式,
an=2λn-λ.
∵λ<0,∴a2n=2λ2n-λ>-λ,a2n-1=2λ2n-1-λ<-λ.
①当λ<-1时,由指数函数的单调性知数列{an}不存在最大值和最小值;
②当λ=-1时,数列{an}的最大值为3,最小值为-1,而
3
-1
=-3∉(-2,2);
③当-1<λ<0时,由指数函数的单调性知,数列{an}的最大值M=a2=2λ2-λ,
最小值m=a1=λ.
-1<λ<0
-2<
2-λ
λ
<2
,解得-
1
2
<λ<0.
综上所述,λ∈(-
1
2
,0)时满足条件.