早教吧作业答案频道 -->其他-->
(2014•南昌模拟)如图,F1,F2是双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为()
题目详情
(2014•南昌模拟)如图,F1,F2是双曲线C:
−
=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两支分别交于A,B两点.若|AB|:|BF2|:|AF2|=3:4:5,则双曲线的离心率为( )
A.
B.
C.2
D.
x2 |
a2 |
y2 |
b2 |
A.
13 |
B.
15 |
C.2
D.
3 |
▼优质解答
答案和解析
∵|AB|:|BF2|:|AF2|=3:4:5,不妨令|AB|=3,|BF2|=4,|AF2|=5,
∵|AB|2+|BF2|2=|AF2|2,
∴∠ABF2=90°,
又由双曲线的定义得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,
∴|AF1|+3-4=5-|AF1|,
∴|AF1|=3.
∴|BF1|-|BF2|=3+3-4=2a,
∴a=1.
在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2,
∴4c2=52,
∴c=
.
∴双曲线的离心率e=
=
.
故选A.
∵|AB|2+|BF2|2=|AF2|2,
∴∠ABF2=90°,
又由双曲线的定义得:|BF1|-|BF2|=2a,|AF2|-|AF1|=2a,
∴|AF1|+3-4=5-|AF1|,
∴|AF1|=3.
∴|BF1|-|BF2|=3+3-4=2a,
∴a=1.
在Rt△BF1F2中,|F1F2|2=|BF1|2+|BF2|2=62+42=52,又|F1F2|2=4c2,
∴4c2=52,
∴c=
13 |
∴双曲线的离心率e=
c |
a |
13 |
故选A.
看了 (2014•南昌模拟)如图,...的网友还看了以下:
过双曲线x^2-y^2=1左焦点的直线与双曲线的右准线的夹角是60度,该直线与双曲线交与AB两点, 2020-04-08 …
点P是直线y=0.5x+2与双曲线y=k/x在第一象限内的一个交点,直线y=0.5x+2与x轴y轴 2020-05-12 …
如图,点C是⊙O优弧ACB上的中点,弦AB=6cm,E为OC上任意一点,动点F从点A出发,以每秒1 2020-05-13 …
点P是直线y=1/2x+2与双曲线y=k/x在第一象限内的一个交点,直线y=1/2x+2与x轴、y 2020-05-21 …
直线y=x与双曲线y=k/x在第一象限交于点M,将直线y=x向右平移1个单位后,与双曲线在第一象限 2020-06-06 …
已知直线y=0.5x与双曲线y=k/x(k>0)交与A,B两点,且点A的横坐标为4.已知直线y=0 2020-06-14 …
在椭圆x^2/9+y^2/4=1上求一点P(x,y)与定点M(m,0)(0 2020-06-21 …
动点M(x,y)与定点F(根号3,0)的距离和它到直线l:x=4/根号3的距离比是常数根号3/2, 2020-07-30 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A,B两点,且点A的横坐标为4如图,已知 2020-08-01 …
如图,已知直线y=1/2x与双曲线y=k/x(k>0)交于A.B两点,且点A的横坐标为4,不能用点 2020-08-01 …