早教吧作业答案频道 -->其他-->
半径不等的两定圆O1、O2无公共点(O1、O2是两个不同的点),动圆O与圆O1、O2都内切,则圆心O轨迹是()A.双曲线的一支B.椭圆或圆C.双曲线的一支或椭圆或圆D.双曲线一支或椭圆
题目详情
半径不等的两定圆O1、O2无公共点(O1、O2是两个不同的点),动圆O与圆O1、O2都内切,则圆心O轨迹是( )
A.双曲线的一支
B.椭圆或圆
C.双曲线的一支或椭圆或圆
D.双曲线一支或椭圆
A.双曲线的一支
B.椭圆或圆
C.双曲线的一支或椭圆或圆
D.双曲线一支或椭圆
▼优质解答
答案和解析
两定圆O1、O2无公共点,它们的位置关系应是外离或内含.
设两定圆O1、O2的半径分别为r1,r2(r1>r2)圆心O的半径为R
当两圆外离时,|OO1|=R-r1,|OO2|=R-r2,∴|OO2|-|OO1|=r1-r2,∴圆心O是轨迹是双曲线的一支;
当两圆内含时,|OO1|=r1-R,|OO2|=R+r2,∴|OO2|+|OO1|=r1+r2,∴圆心O是轨迹是椭圆.
故选:D.
设两定圆O1、O2的半径分别为r1,r2(r1>r2)圆心O的半径为R
当两圆外离时,|OO1|=R-r1,|OO2|=R-r2,∴|OO2|-|OO1|=r1-r2,∴圆心O是轨迹是双曲线的一支;
当两圆内含时,|OO1|=r1-R,|OO2|=R+r2,∴|OO2|+|OO1|=r1+r2,∴圆心O是轨迹是椭圆.
故选:D.
看了 半径不等的两定圆O1、O2无...的网友还看了以下:
某圆锥曲线C是椭圆或双曲线,其中心为原点,对称轴为坐标轴,且过,B(,-),则A.曲线C可以是椭圆 2020-05-15 …
某圆锥曲线C是椭圆或双曲线,若其中心是坐标原点,对称轴为坐标轴,且过点A(-2,2√3)B(3/2 2020-05-15 …
设A是任意实数,则方程x^2*cosA+y^2=1所表示的曲线不可能是A.直线B双曲线C椭圆设A是 2020-06-02 …
已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交 2020-06-21 …
关于椭圆斜率的问题过椭圆x^2/a^2+y^2/b^2=1,a,b>0上任意一点A(x0,y0)任 2020-06-21 …
已知椭圆M的离心率N,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满 2020-06-30 …
椭圆E:x2/a2+y2/b2=1在左焦点为F1,右焦点为F2,离心率e=1/2,过F1的直线交于 2020-07-21 …
椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,直线l过F2交椭 2020-07-30 …
求椭圆一条割线的长度方程一椭圆长轴2a在x轴上,短轴2b,从椭圆长轴顶点A上引一条直线交椭圆于B, 2020-07-31 …
设椭圆(a>b>0)的左焦点为F,上顶点为A,直线AF的倾斜角为45°,(1)求椭圆的离心率;(2 2020-07-31 …