早教吧 育儿知识 作业答案 考试题库 百科 知识分享

等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为()A.40B.46C.48D.50

题目详情
等腰Rt△ABC中,∠BAC=90°,D是AC的中点,EC⊥BD于E,交BA的延长线于F,若BF=12,则△FBC的面积为(  )

A.40
B.46
C.48
D.50
▼优质解答
答案和解析
∵CE⊥BD,
∴∠BEF=90°,
∵∠BAC=90°,
∴∠CAF=90°,
∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,
∴∠ABD=∠ACF,
∵在△ABD和△ACF中
∠BAD=∠CAF
AB=AC
∠ABD=∠ACF

∴△ABD≌△ACF,
∴AD=AF,
∵AB=AC,D为AC中点,
∴AB=AC=2AD=2AF,
∵BF=AB+AF=12,
∴3AF=12,
∴AF=4,
∴AB=AC=2AF=8,
∴△FBC的面积是
1
2
×BF×AC=
1
2
×12×8=48,
故选C.