早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知:如图,在△ABC中,∠ACB=90°,BD平分∠ABC,交AC于点D,CE⊥AB于点E,交BD于点O,过点O作FG∥AB,分别交BC、AC于点F、G.求证:(1)△COD是等腰三角形;(2)CD=GA.

题目详情
已知:如图,在△ABC中,∠ACB=90°,BD平分∠ABC,交AC于点D,CE⊥AB于点E,交BD于点O,过点O作FG∥AB,分别交BC、AC于点F、G.
求证:(1)△COD是等腰三角形;(2)CD=GA.
▼优质解答
答案和解析
证明:(1)∵BD平分∠ABC,
∴∠1=∠2,
∵∠BCD=90°,
∴∠1+∠3=90°,
∵CE⊥AB,
∴∠BEO=90°,
∴∠2+∠4=90°
∴∠3=∠4,
∵∠4=∠5,
∴∠3=∠5,
∴OC=DC,即△COD是等腰三角形;

(2)过点D作DH⊥AB于H,
∵BD平分∠ABC,DH⊥AB于H,DC⊥BC于C,
∴DC=DH,
∵DC=OC,
∴OC=DH,
∵FG∥AB,
∴∠6=∠A,
∴△COG≌△DHA,
∴CG=DA,
∴CG-CD=DA-DG,
即CD=AG.