早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,正方形ABCD的边长为2,点E,F分别是DC和BC两边上的动点且始终保持∠EAF=45°,连接AE与AF交DB于点N,M.下列结论:①△ADM∽△NBA;②△CEF的周长始终保持不变其值是4;③AE×AM=AF×AN;④DN

题目详情

如图,正方形ABCD的边长为2,点E,F分别是DC和BC两边上的动点且始终保持∠EAF=45°,连接AE与AF交DB于点N,M.下列结论:①△ADM∽△NBA;②△CEF的周长始终保持不变其值是4;③AE×AM=AF×AN;④DN2+BM2=NM2.其中正确的结论是(  )
作业帮

A. ①②③

B. ①②④

C. ②③④

D. ①③④

▼优质解答
答案和解析
作业帮 ①∠ANB=∠NDA+∠NAD=45°+∠NAD,∠MAD=∠MAN+∠NAD=45°+∠NAD,
∴∠ANB=∠MAD,又∠ADM=∠ABN=45°,
∴△ADM∽△NBA,①正确;
②如图1,把△ADE顺时针旋转90°得到△ABG,则BG=DE,∠FAG=∠FAB+∠DAE=45°,
在△AEF和△AGF中,
AE=AG
∠EAF=∠FAG
AF=AF

∴△AEF≌△AGF,
∴DG=EF,
∴△CEF的周长=CE+CF+EF=CE+DE+CF+FG=4,②正确;
③当MN∥EF时,AE×AM=AF×AN,
∵MN与EF的位置关系不确定,∴③错误;
作业帮如图2,把△ADN顺时针旋转90°得到△ABH,则BH=DN,∠MAH=∠MAB+∠BAH=∠MAB+∠DAN45°,
在△NAM和△HAM中,
AN=AH
∠NAM=∠HAM
AM=AM

∴△AEF≌△AGF,
∴MN=MH,
又∵∠MBH=∠MBA+∠ABH=90°,
∴BH2+BM2=MH2,即DN2+BM2=NM2,④正确.
故选:B.