早教吧作业答案频道 -->数学-->
已知定义在R上的函数f(x)=(-2^x+b)/(2^x+a)是奇函数1、求a、b的值2、若对任意的t属于R,不等式f(t^2-2t)+f(2*t^2-k)<0恒成立,求k的取值范围.
题目详情
已知定义在R上的函数f(x)=(-2^x+b)/(2^x+a)是奇函数
1、求a、b的值
2、若对任意的t属于R,不等式f(t^2-2t)+f(2*t^2-k)<0恒成立,求k的取值范围.
1、求a、b的值
2、若对任意的t属于R,不等式f(t^2-2t)+f(2*t^2-k)<0恒成立,求k的取值范围.
▼优质解答
答案和解析
1.f(-x)=[-2^(-x)+b]/[2^(-x)+a)]
=(-1+b*2^x)/(1+a*2^x)
因为f(x)=(-2^x+b)/(2^x+a)是奇函数
有,f(0)=(-1+b)/(1+a)=0 得 b=1
且,f(-x)=-f(x)
(-1+b*2^x)/(1+a*2^x)=-(-2^x+b)/(2^x+a)
将b=1代入整理得
(-1+2^x)/(1+a*2^x)=(2^x-1)/(2^x+a)
1+a*2^x=2^x+a恒成立
则a=1
故a=1,b=1
2.f(x)=(-2^x+1)/(2^x+1)=-1+2/(2^x+1)
可知f(x)=-1+2/(2^x+1)为递减函数
f(t^2-2t)+f(2*t^2-k)<0恒成立
只要f(t^2-2t)-2*t^2+k恒成立
3t^2-2t-k>0恒成立
则△=4+12k
=(-1+b*2^x)/(1+a*2^x)
因为f(x)=(-2^x+b)/(2^x+a)是奇函数
有,f(0)=(-1+b)/(1+a)=0 得 b=1
且,f(-x)=-f(x)
(-1+b*2^x)/(1+a*2^x)=-(-2^x+b)/(2^x+a)
将b=1代入整理得
(-1+2^x)/(1+a*2^x)=(2^x-1)/(2^x+a)
1+a*2^x=2^x+a恒成立
则a=1
故a=1,b=1
2.f(x)=(-2^x+1)/(2^x+1)=-1+2/(2^x+1)
可知f(x)=-1+2/(2^x+1)为递减函数
f(t^2-2t)+f(2*t^2-k)<0恒成立
只要f(t^2-2t)-2*t^2+k恒成立
3t^2-2t-k>0恒成立
则△=4+12k
看了 已知定义在R上的函数f(x)...的网友还看了以下:
已知集合A{x|x^2-2x-3≤0,B={x|x^2-2mx+m^2-4≤0,x属于R 若A∩B 2020-04-06 …
求解2次函数题原题是圆柱表面积=2派r^2+2派rh已知体积派r^2h=375求r和h个人理解是化 2020-04-12 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
已知三角形的三个顶点分别为A(6,-7),B(-2,3),C(2,1),求AC边上的中线所在的直线 2020-06-03 …
根式计算化简1、(1/x^2-3x+2)+(1/x^2-x)+(1/x^2+x)+(1/x^2+3 2020-07-30 …
求由圆x^2+(y-R)^2=r^2绕x轴旋转一周所得旋转曲面所围立体的体积 2020-07-31 …
5x^2+16x+12=12x^2-29x+15=12x^2-25xy+12y^2=20a^2+42 2020-10-31 …
求一道预备班数学期中考试的答案小明在做题时发现了一个规律:1*2/1=1-2/1,2*3/1=2/1 2020-11-05 …
看到一个题不太理解,设OB=R则S半圆=1/2π(R/2)^2=1/8πR^2S扇OBC=45/36 2020-11-21 …
已知函数f(x)=x^3/3-mx^2+3mx/2(m>0)(1)若f(x)在区间[1,2]上单调递 2020-12-08 …