早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•南通)如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于

题目详情
(2014•南通)如图,抛物线y=-x2+2x+3与x轴相交于A、B两点,与y轴交于点C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.
(1)求线段DE的长;
(2)设过E的直线与抛物线相交于点M(x1,y1),N(x2,y2),试判断当|x1-x2|的值最小时,直线MN与x轴的位置关系,并说明理由;
(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.
▼优质解答
答案和解析
由抛物线y=-x2+2x+3可知,C(0,3),
令y=0,则-x2+2x+3=0,解得:x=-1,x=3,
∴A(-1,0),B(3,0);
∴顶点x=1,y=4,即D(1,4);
∴DF=4
设直线BC的解析式为y=kx+b,代入B(3,0),C(0,3)得;
0=3k+b
3=b
,解得
k=−1
b=3

∴解析式为;y=-x+3,
当x=1时,y=-1+3=2,
∴E(1,2),
∴EF=2,
∴DE=DF-EF=4-2=2.

(2)设直线MN的解析式为y=kx+b,
∵E(1,2),
∴2=k+b,
∴k=2-b,
∴直线MN的解析式y=(2-b)x+b,
∵点M、N的坐标是
y=(2−b)x+b
y=−x2+2x+3
的解,
整理得:x2-bx+b-3=0,
∴x1+x2=b,x1x2=b-3;
∵|x1-x2|=
(x1−x2)2
=
作业帮用户 2016-12-15
问题解析
(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC的解析式,把对称轴代入直线BC的解析式即可求得.
(2)设直线MN的解析式为y=kx+b,依据E(1,2)的坐标即可表示出直线MN的解析式y=(2-b)x+b,根据直线MN的解析式和抛物线的解析式即可求得x2-bx+b-3=0,所以x1+x2=b,x1 x2=b-3;根据完全平方公式即可求得∵|x1-x2|=
(x1−x2)2
=
(x1+x2)2−4x1x2
=
b2−4(b−3)
=
(b−2)2+8
,所以当b=2时,|x1-x2|最小值=2
2
,因为b=2时,y=(2-b)x+b=2,所以直线MN∥x轴.
(3)由D(1,4),则tan∠DOF=4,得出∠DOF=∠α,然后根据三角形外角的性质即可求得∠DPO=∠ADO,进而求得△ADP∽△AOD,得出AD2=AO•AP,从而求得OP的长,进而求得P点坐标.
名师点评
本题考点:
二次函数综合题.
考点点评:
本题考查了待定系数法求解析式,二次函数的交点、顶点坐标、对称轴,以及相似三角形的判定及性质,求得三角形相似是本题的关键.
我是二维码 扫描下载二维码