早教吧作业答案频道 -->数学-->
如图,已知点A,点B在第一,三象限的角平分线上,P为直线AB上的一点,PA=PB,AM、BN分别垂直与x轴、y轴,连接PM、PN.(1)求直线AB的解析式;(2)如图1,P、A、B在第三象限,猜想PM,PN之
题目详情
如图,已知点A,点B在第一,三象限的角平分线上,P为直线AB上的一点,PA=PB,AM、BN分别垂直与x轴、y轴,连接PM、PN.
(1)求直线AB的解析式;
(2)如图1,P、A、B在第三象限,猜想PM,PN之间的关系,并说明理由;
(3)点P、A在第三象限,点B在第一象限,如图2其他条件不变,(2)中的结论还成立吗,请证明你的结论.
(1)求直线AB的解析式;
(2)如图1,P、A、B在第三象限,猜想PM,PN之间的关系,并说明理由;
(3)点P、A在第三象限,点B在第一象限,如图2其他条件不变,(2)中的结论还成立吗,请证明你的结论.
▼优质解答
答案和解析
(1)∵点A,点B在第一,三象限的角平分线上,
∴直线AB的解析式是y=x;
(2)PM=PN且PM⊥PN,
理由是:过P作PE⊥x轴于E,PF⊥y轴于F,过A作AQ⊥y轴于Q,
∵A在第一、三象限的角平分线上,PM⊥x轴于M,
∴AM=AQ,∠AMO=90°,∠MOA=45°,
∴∠MAO=∠MOA=45°,
∴OM=AM,
同理OQ=AQ,
∴OM=OQ,
同理OE=OF,PE=PF,
在△MEP和△NFP中
∴△MEP≌△NFP(SAS),
∴PM=PN,∠EPM=∠NPF,
∵PE⊥x轴,PF⊥y轴,x轴⊥y轴,
∴∠EOF=∠OEP=∠OFP=90°,
∴∠EPF=90°,
∴∠MPN=∠MPE+∠EPN=∠FPN+∠EPN=∠EPF=90°,
即PM⊥PN;
(3)成立;
证明:延长BN交AM于E,连接EP,
∵A、B在第一、三象限角的角平分线上,
∴∠MOA=∠BON=45°,
∵∠BNO=∠AMO=90°,
∴∠NBO=∠EAO=∠NOB=45°,
∴AE=BE,BN=ON,
∵∠ENO=∠NOM=∠EMO=90°,
∴四边形EMON是矩形,
∴ME=ON=BN,∠AEB=90°,
∵P为AB中点,AE=BE,
∴∠MEP=∠NBP=45°,EP=PB,∠EPB=90°,
在△EMP和△BNP中
∴△EMP≌△BNP(SAS),
∴PM=PN,∠EPM=∠NPB,
∵∠EPB=90°,
∴∠MPN=∠MPE+∠EPN=∠BPN+∠EPN=∠EPB=90°,
即PM⊥PN.
∴直线AB的解析式是y=x;
(2)PM=PN且PM⊥PN,
理由是:过P作PE⊥x轴于E,PF⊥y轴于F,过A作AQ⊥y轴于Q,
∵A在第一、三象限的角平分线上,PM⊥x轴于M,
∴AM=AQ,∠AMO=90°,∠MOA=45°,
∴∠MAO=∠MOA=45°,
∴OM=AM,
同理OQ=AQ,
∴OM=OQ,
同理OE=OF,PE=PF,
在△MEP和△NFP中
|
∴△MEP≌△NFP(SAS),
∴PM=PN,∠EPM=∠NPF,
∵PE⊥x轴,PF⊥y轴,x轴⊥y轴,
∴∠EOF=∠OEP=∠OFP=90°,
∴∠EPF=90°,
∴∠MPN=∠MPE+∠EPN=∠FPN+∠EPN=∠EPF=90°,
即PM⊥PN;
(3)成立;
证明:延长BN交AM于E,连接EP,
∵A、B在第一、三象限角的角平分线上,
∴∠MOA=∠BON=45°,
∵∠BNO=∠AMO=90°,
∴∠NBO=∠EAO=∠NOB=45°,
∴AE=BE,BN=ON,
∵∠ENO=∠NOM=∠EMO=90°,
∴四边形EMON是矩形,
∴ME=ON=BN,∠AEB=90°,
∵P为AB中点,AE=BE,
∴∠MEP=∠NBP=45°,EP=PB,∠EPB=90°,
在△EMP和△BNP中
|
∴△EMP≌△BNP(SAS),
∴PM=PN,∠EPM=∠NPB,
∵∠EPB=90°,
∴∠MPN=∠MPE+∠EPN=∠BPN+∠EPN=∠EPB=90°,
即PM⊥PN.
看了 如图,已知点A,点B在第一,...的网友还看了以下:
已知椭圆x2/4+y2/2=1(四分之x方+二分之y方=1),点A、B分别是它的左右定点,一条垂直 2020-04-27 …
如图,在平面直角坐标系中,已知直线m经过点(3,0)且与x轴垂直,点A为其上一动点,直线l:y=1 2020-05-13 …
已知直线L1:x-2y-1=0,直线L2:ax-by+1=0,a,b∈{123456}.求直线L1 2020-05-16 …
已知a,b可以取-2,-1,1,2中任意一个值(a≠b),求直线y=ax+b的图像不经过第四象限的 2020-06-26 …
已知P是正方形ABCD所在平面外一点,PA垂直平面ABCD,M,N依次为BC,CD的中点,设PA= 2020-07-12 …
已知直线y=x+b和圆x^2+y^2+2x-2y+1=01)若直线和圆相切,求直线的方程(2)若b 2020-07-25 …
线段AB与平面α平行,平面α的斜线AA1、BB1与α所成的角分别是和,A1、B1为斜足,且∠A1A 2020-07-30 …
线段AB与平面a平行,平面a的斜线AA1、BB1与a所成的角分别是30°和60°,A1、B1为斜足 2020-07-30 …
已知抛物线y2=2px(p>0),过点(2,0)作直线与抛物线交于两点,若两点纵坐标之积为-8.( 2020-08-01 …
已知复数a+i、2-i在复平面内对应的点分别为A、B,求直线AB的斜率. 2020-08-01 …